跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡欣儀
研究生(外文):Hu, Hsin Yi
論文名稱:利用電化學沉積法於奈米碳管上製備高濃度鉑奈米 顆粒並應用於質子交換膜燃料電池陽極端之研究
論文名稱(外文):Preparation of High Loading Pt Nanoparticles on Multiwalled Carbon Nanotubes by Electrodeposition Method Applied for the Anode of Proton Exchange Membrane Fuel Cells
指導教授:葉宗洸葉宗洸引用關係
指導教授(外文):Yeh, Tsung Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:87
中文關鍵詞:質子交換膜燃料電池奈米碳管電化學沉積法
外文關鍵詞:PEMFCPtCarbon nanotubesElectrodeposition
相關次數:
  • 被引用被引用:3
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學沉積法於奈米碳管上製備高濃度鉑奈米顆粒並應用於質子交換膜燃料電池陽極端。由於質子交換膜燃料電池在低溫下擁有高能量密度、對環境無害且以高分子交換膜傳導質子無任何化學液體並無封裝問題等優點,已成為未來汽車和可攜帶式電子產品的電源選擇之一。影響質子交換膜燃料電池效率重要因素之一為電極之觸媒,為了得到高分散性及粒徑較小之觸媒顆粒,使用高比表面積之奈米碳管作為觸媒支撐層已被廣為採用,除此之外,奈米碳管擁有好的電子傳導力、絕佳機械性質和高的化學穩定性等優點。然而,要成長高分散性的觸媒奈米顆粒仍然有很大的挑戰,尤其是在製備出高濃度鉑奈米顆粒於奈米碳管上之挑戰。本研究主要目的是利用簡單電沉積方法製備出高分散性、高濃度之鉑奈米顆粒於奈米碳管上。
實驗步驟方面,首先利用化學氣象沉積法直接成長奈米碳管於氣體擴散層上,再使用循環伏安法對奈米碳管作親水處理,最後利用電化學沉積法於氯鉑酸和檸檬酸混合溶液內製備高濃度鉑奈米顆粒於奈米碳管上。測試方面,經由循環伏安法分別於 0.5 M 硫酸溶液和0.5 M 硫酸溶液加上1 M甲醇進行半電池測試,並利用 X 光粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、高解析電子能譜儀(HRXPS)、感應耦合電漿質譜分析儀(ICP-MS)對試片做進一步的分析,最後利用全電池測試將自製觸媒與商用觸媒進行比較。氫氣單電池測試結果發現,使用最佳參數的自製觸媒作為陽極,其功率密度可達927 mW/cm2,此效率是高於陰陽極兩邊使用商用觸媒之單電池的50%,另一方面,使用陰陽極都是自製觸媒之單電池,其效率更可達1190 mW/cm2。

Proton exchange membrane fuel cells (PEMFCs) have generated considerable interest as a power source for portable electronics and automobiles because of their high power density at lower temperatures, environmentally friendly nature and compact design. The catalyst layers are the one of important factors in determining the efficiency of PEMFCs. In order to increase the efficiency of PEMFCs, the catalysts with smaller particle size and highly dispersion were readily characterized. In order to enhance catalytic properties, carbon nanotubes (CNTs) as catalyst supports have sparked an interest due to their high surface area, strong mechanical properties and good electronic conductivity. However, obtaining highly dispersed Pt nanoparticles is still a challenge. Thus, this study investigated high loading Pt nanoparticles on multiwalled carbon nanotubes by electrodeposition method applied for the anode of PEMFCs.
In the experiment, CNTs were directly grown on the gas diffusion layer by chemical vapor deposition (CVD) and then treated with hydrophilic process. After that, Pt nanoparticles were deposited on CNTs by the electrochemical method in chloroplatinic acid and citric acid at 30℃. The electrochemical characterizations of catalysts were obtained by cyclic voltammetry in argon saturated 0.5M H2SO4 and 0.5M H2SO4 with 1M CH3OH solution, respectively. Pt/CNTs/Carbon Cloth or Carbon Paper were characterized by SEM, TEM, XPRD, HRXPS and ICP-MS. Finally, The single cell tests indicated the power density of the homemade MEA could reach up to 927 mW/cm2 which is 50% higher than that of the commercial MEA.

摘要 i
Abstract ii
致謝 iii
總目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 基本原理與文獻回顧 5
2.1 燃料電池簡介 5
2.2 質子交換膜燃料電池結構 8
2.2.1 氣體擴散層 8
2.2.2 觸媒層 9
2.2.3 觸媒載體 10
2.2.4質子交換膜 14
2.2.5雙極板 15
2.3質子交換膜燃料電池工作原理 16
2.4全電池極化損失 17
2.4.1燃料穿透(Fuel Crossover) 18
2.4.2活性極化(Activation Losses) 18
2.4.3歐姆極化(Ohmic Losses) 19
2.4.4濃度極化(Mass Transport) 20
2.5電化學分析 20
2.5.1極化曲線(Linear Sweep Voltammetry) 20
2.5.2循環伏安法(Cyclic Voltammetry) 21
2.6陽極觸媒甲醇氧化反應 22
2.6.1甲醇氧化反應機制 22
2.6.2甲醇氧化反應觸媒 23
2.7 觸媒製備方法 25
2.7.1電化學沉積法 25
2.7.2脈衝式電鍍法 26
第三章 實驗方法 32
3.1實驗流程與架構 32
3.2實驗藥品與設備 33
3.2.1實驗藥品 33
3.2.2實驗用氣體 34
3.2.3實驗設備 34
3.2.4分析儀器 35
3.3觸媒載體之製備 35
3.4電化學實驗裝置設計 37
3.5奈米碳管親水化處理 38
3.6電化學沉積法製備鉑觸媒 38
3.7觸媒催化性分析 40
3.7.1電化學分析 40
3.7.2硫酸測試(Sulfuric acid test) 40
3.7.3甲醇測試(Methanol oxidation test) 41
3.8觸媒形態分析 42
3.8.1場發射掃描式電子顯微鏡 (Field Emission Gun Scanning Electron Microscopy, FEG-SEM) 42
3.8.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 43
3.8.3 X光粉末繞射(X-ray Powder Diffraction, XPRD) 44
3.9組成比例分析 45
3.9.1感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 45
3.9.2高解析電子能譜儀(High Resolution X-ray Photoelectron Spectrometer, HRXPS) 46
3.10單電池測試 (Single Cell Test) 46
3.10.1膜電池組(Membrane Electrode Assembly, MEA)製備 46
3.10.2漿料配置與噴塗 48
3.10.3 MEA壓合 49
3.10.4單電池極化掃描測試 49
第四章 結果與討論 51
4.1實驗一: 使用碳布做為擴散層,改變不同氯鉑酸濃度電沉積Pt觸媒,並使用熱壓法製備MEA應用於質子交換膜燃料電池之探討。 51
4.1.1奈米碳管載體(Ar-CNT/CC) 51
4.1.2場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 53
4.1.3半電池電化學分析結果 56
4.1.4感應耦合電漿質譜分析儀分析(ICP-MS) 58
4.1.5單電池測試分析結果 59
4.2實驗二: 使用碳紙做為擴散層,改變不同高電位電沉積Pt觸媒,並使用冷壓法製備MEA應用於質子交換膜燃料電池之探討。 62
4.2.1奈米碳管載體(N2-CNT/CP) 62
4.2.2場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 64
4.2.3穿透式電子顯微鏡之觸媒微影圖像分析(TEM) 66
4.2.4半電池電化學分析結果 67
4.2.5感應耦合電漿質譜分析儀分析(ICP-MS) 70
4.2.6 X光粉末繞射法分析(XPRD) 70
4.2.7高解析電子能譜儀(HRXPS) 71
4.2.8單電池測試分析結果 73
第五章 結論 78
5.1 實驗一 78
5.2 實驗二 78
參考文獻 80

[1] Hagelüken, Christian, "Recycling the Platinum Group Metals: A European Perspective", Platinum Metals Review, vol. 56, no. 1, pp. 29-35, 2012
[2] 盧敏彥, "燃料電池電及觸媒(一)-高分子電解質膜燃料電池陽極觸媒", The Chinese Chem. Soc., vol. 62, no. 1, pp.139~148, March. 2004
[3] W. R. Grove, ''On voltaic series and the combination of gases by platinum'', Phil. Mag., vol. 14, pp. 127-130, 1839
[4] J. Larminie, A. Dicks, Fuel cell systems explained 2nd, edited by J. Wiley, Chichester West Sussex, 2003
[5] B. Wickman, ''Nanostructured Model Electrodes for Studies of Fuel Cell Reactions'', Chalmers University of Technology, 2010
[6] 李依文,「應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究」,清大工程與系統科學系,碩士論文,中華民國一○四年
[7] Andreas Pfrang, Damien Veyret, Georgios Tsotridis, Convection and Conduction Heat Transfer, edited by Dr. Amimul Ahsan, Netherlands, 2011
[8] G. Sasikumar, H. Ryu, ''Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells'', Journal of the Korean Electrochemical Society, vol.6, no.3, pp.183-186, 2003
[9] J. J. Baschuk, Xianguo Li, ''Carbon Monoxide Poisoning of Proton Exchange Membrane Fuel Cells'', Int. J. Energy Res., vol. 25, pp.695–713. 2001
[10] Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J, ''A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation'', J. Power Sources, vol. 165, pp.739–756, 2007
[11] Das SK, Reis A, Berry KJ, ''Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell'', J. Power Sources, vol. 193, pp. 691–698, 2009
[12] Uchida Makoto, Aoyama Yuko, Tanabe Mieko, Yanagihara Nobuyuki, Eda Nobuo, Ohta Akira, ''Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol'', J. Electrochem. Soc., vol.142, pp. 2572, 1995
[13] J. McBreen, H. Olender, S. Srinivasan, K.V. Kordesch, ''Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation'', J. Appl. Electrochem, vol.11, pp. 787-796, 1981
[14] D. Pantea, H. Darmstadt, S. Kaliaguine, L. Sümmchen, C. Roy, ''Electrical conductivity of thermalcarbon blacks. Influence of surface chemistry'', Carbon, vol.39, pp. 1147, 2001
[15] J. Barthel, M. Wühr, R. Buestrich, H. J. Gores, '' A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes '', J. Electrochem. Soc., vol. 142, No. 8, August 1995
[16] T. Maiyalagan, B. Viswanathan, U.V. Varadaraju,''Nitrogen containing carbon nanotubes as supports for Pt – alternate anodes for fuel cell applications'', Electrochem. Commun., vol. 7, pp. 905, 2005
[17] P. Serp, M. Corrias, P. Kalck, ''Review of nanotubes for catalysis applications'', Appl. Catal. A, vol.253 , pp. 337, 2003
[18] G.G. Wildgoose, C.E. Banks, R.G. Compton, ''Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications'', Small, vol. 2, pp. 182, 2006
[19] K. Lee, J. Zhang, H. Wang, D. P. Wilkinson, ''Progress in the Synthesis of Carbon Nanotube and Nanofiber-Supported Pt Electrocatalysts for PEM Fuel Cell Catalysis'', Journal of Applied Electrochemistry, vol. 36, No. 5, pp. 507-522, 2006
[20] J. Prabhuram, T.S. Zhao, Z.K. Tang, R., Chen, Z.X. Liang, ''Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells'', J. Phys. Chem. B, vol. 110, pp. 5245, 2006
[21] H. Zhang, X. Xu, P. Gu, C. Li, P. Wu, C. Cai, ''Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation'', Electrochim Acta, vol. 56, pp. 7064–7077, 2011
[22] Y. Shao, G. Yin, Y. Gao and P. Shi, ''Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions'', Journal of the Electrochemical Society, vol. 153, pp. 1093-1097, 2006
[23] E. Antolini, ''Carbon supports for low-temperature fuel cell catalysts'', Applied Catalysis B: Environmental, vol. 88, pp. 1–24, 2009
[24] Y. Takasu, T. Kawaguchi, W. Sugimoto and Y. Murakami, ''Effects of the surface area of carbon support on the characteristics of highly-dispersed PtRu particles as catalysts for methanol oxidation'', Electrochimica Acta, vol. 48, pp. 3861-3868, 2003
[25] Sumio Iijima,''Helical microtubules of graphitic carbon'', Nature, vol. 354, pp. 56, 1991
[26] Jing Liu, Chun-Tao Liu, Lei Zhao, Jing-Jia Zhang, Li-Mei Zhang and Zhen-Bo Wang, ''Effect of different structures of carbon supports for cathode catalyst on performance of direct methanol fuel cell'', International journal of hydrogen energy, vol. 41, pp. 1859 -1870, 2016
[27] Pichumani J. Britto, "Improved Charge Transfer at Carbon Nanotube Electrodes", Advanced Materials, vol. 11, no. 2, pp. 154-157, 1999
[28] Yougui Chen, Jiajun Wang, Xiangbo Meng, Yu Zhong, Ruying Li, Xueliang Sun, Siyu Ye, Shanna Knights, "Pt-SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition", Journal of Power Sources, vol. 238, pp. 144-149, 2013
[29] Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye, S. Knights, "Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells", Electrochemistry Communications, vol. 11, pp. 2071-2076, 2009
[30] Y. Chen, J. Wang, H. Liu, M.N. Banis, R. Li, X. Sun, T.K. Sham, S. Ye, S. Knights, "Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells", The Journal of Physical Chemistry C, vol. 115, pp. 3769-3776, 2011
[31] Minjae Jung, Kwang Yong Eun, Young-Joon Baik, Kwang-Ryeol Lee, Jin-Koog Shin, Sung-Tae Kim, "Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells", Thin Solid Films, vol. 398 –399, pp. 150–155, 2001
[32] Ming-Chi Tsai, Tsung-Kuang Yeh, Chuen-Horng Tsai, "An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation", Electrochemistry Communication, vol.8, pp.1445-1452, 2006
[33] 林鴻明,「台灣奈米結構材料與技術之研究現況」,化工科技與商情,No. 32,26-28頁,2002
[34] Jitendra N. Tiwari, Rajanish N. Tiwari, Gyan Singh, Kwang S. Kim, "Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells", Nano Energy, vol. 2, pp.553–578, 2013
[35] T. R. Ralph, M. P. Hogarth, ''Catalysis for Low Temperature Fuel Cells'', Platinum Metals Review, vol.46, pp. 117-135, Jul. 2002
[36] M. Naraghi, ''Carbon Nanotubes-Growth and Applications '', In Tech, pp. 337-392, 2011
[37] 彭文權,「以沈積法製備甲醇燃料電池用之 Pt -Ru 雙金屬觸媒」,元智工學院化學工程系,碩士論文,中華民國八十六年
[38] S. Thomas, M. Zalbowitz, D. Gill, Fuel Cells: Green Power, USA, 2006
[39] Li Li, Gang Wu, Bo-Qing Xu, ''Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids'', Carbon, vol. 44, pp. 2973–2983, 2006
[40] G. Hoogers, D. Thompsett, ''Catalysis in proton exchange membrane fuel cell technology'', Cat. Tech., vol. 3, pp. 106–124, 2000
[41] K. Lasch, G. Hayn, L. Jӧrissen, J. Garche, O. Besenhardt, ''Mixed conducting catalyst support materials for the direct methanol fuel cell'', J Power Sources, vol. 105, pp. 305–310, 2002
[42] H. Tang, J.H. Chen, Z.P. Huang, ''High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays'', Carbon, vol. 42, pp. 191–197, 2004
[43] J.S. Yu, S. Kang, S.B. Yoon, G. Chai, ''Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter'', J Am Chem Soc., vol.124(32) , pp. 9382–9383, 2002
[44] W.Z. Li, C.H. Liang, W.J. Zhou, Q. Xin, ''Carbon nanotubes as support for cathode catalyst of a direct methanol fuel'', Carbon, vol. 40(5), pp. 791–794, 2002
[45] W.Z. Li, C.H. Liang, W.J. Zhou, Q. Xin, ''Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells'', J Phys Chem B, vol. 107(26), pp. 6292–6299, 2003
[46] S.I. Pyun, C.K. Rhee, ''An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures'', Electrochim Acta, vol. 49(24), pp. 4171–4180, 2004
[47] Z.B. He, J.H. Chen, D.Y. Liu, H.H. Zhou, Y.F. Kuang, ''Electrodeposition of PtARu nanoparticles on carbon nanotubes and their electrocatalystic properties for methanol electrooxidation'', Diam Relat Mater, vol. 13, pp. 1764–1779, 2004
[48] Gyubong Kim, Seung-Hoon Jhi, ''Carbon Monoxide-Tolerant Platinum Nanoparticle Catalysts on Defect-Engineered Graphene'', ACS Nano, vol. 5, no. 2, pp. 805-810, 2011
[49] B. Beden, C. Lamy, N. R. de Tacconi, A. J. Arvia, ''The electrooxidation of CO: a test reaction in electrocatalysis'', Electrochimica Acta, vol. 35, no. 4, pp. 691–704, 1990
[50] K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, "Pore structure of single-wall carbon nanohorn aggregates", Chem. Phys. Letters, vol. 331, pp. 14, 2000
[51] Y. Tang, Z. Yang, X. Dai, ''Preventing the CO poisoning on Pt nanocatalyst using appropriate substrate: a first-principles study'', J. Nanopart. Res, vol. 14, pp. 844, 2012
[52] C. Bock, H. Halvorsen, B. MacDougal, ''PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Catalyst Layers'', Platinum Metals Rev., vol. 53, pp.219-220, 2009
[53] 莊宸綱,「利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」,清大工程與系統科學系,碩士論文,中華民國一○三年
[54] H.Y. Du, C.S. Yang, H.C. Hsu, H.C. Huang, S.T. Chang, C.H. Wang, J.C. Chen, ''Pulsed electrochemical deposition of Pt NPs on polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells'', International Journal Of Hydrogen Energy, vol. 40, pp. 14398-14404, 2015
[55] Ming-Chi Tsai, Tsung-Kuang Yeh, Chuen-Horng Tsai, ''Methanol oxidation efficiencies on carbon-nanotubesupported platinum and platinumeruthenium nanoparticles prepared by pulsed electrodeposition'', International Journal of Hydrogen Energy, vol. 36, pp. 8261-8266, 2011
[56] H.Y. Chou, Chien-Kuo Hsieh, Ming-Chi Tsai, Yu-Hsuan Wei, Tsung-Kuang Yeh, Chuen-Horng Tsai, ''Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions'', Thin Solid Films, 2014
[57] S. Ozkar, R.G. Finke, ''Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application of five comparative criteria'', J. Am. Chem. Soc., vol. 124, pp. 5796, 2002
[58] J. Wang, Adapted from Analytical Electrochemistry 2nd, edited by Wiley-VCH, New York, United States, pp.28, 2000
[59] J.Y. Sun, J.S. Huang, Y.X. Cao, X.G. Zhang, "Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol," International Journal of Electrochemical Science, vol. 2, pp. 64-71, Jan. 2007
[60] 李珠,「感應耦合電漿質譜儀技術及其在材料分析上的應用」,工業材料雜誌181期, 2002
[61] H.I. Lee, C.H. Lee, T.Y. Oh, S.G. Choi, I.W. Park, K.K. Baek, "Development of 1kW class polymer electrolyte membrane fuel cell power generation system", Journal of Power Sources, vol.107, pp.110-119, Apr 2002
[62] 林彥佑,「應用電化學沉積法於奈米碳管為支撐層製備燃料電池觸媒」,清大工程與系統科學系,碩士論文,中華民國一○一年
[63] N. Soin, SS Roy, L. Karlsson, J.A. McLaughlin, "Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material", Diamond and Related Materials, vol. 19, pp. 595-598, 2010

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒
2. 應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究
3. 利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒
4. 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究
5. 以含浸法製備觸媒在奈米碳管上應用在直接甲醇燃料電池應用在直接甲醇燃料電池以含浸法製備觸媒在奈米碳管上
6. 白金/奈米碳管載體最佳合成比例與質子交換膜燃料電池陰極觸媒層最佳Nafion含量測試分析
7. 應用白金/奈米碳管載體製作陰極觸媒層對質子交換膜燃料電池性能影響測試分析
8. 奈米碳管複合式陽極之合成及其於電化學氧化之應用
9. 脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池
10. 應用於高溫質子交換膜燃料電池之 Pt/PyPBI-CNT 觸媒製備
11. 電化學沉積鉑與鉑釕應用於直接甲醇燃料電池陽極觸媒之電化學特性研究
12. 利用碳材為基底結合金屬奈米粒子修飾應用於生物分子之感測研究
13. 奈米碳管混合乙炔碳黑製作微孔層對質子交換膜燃料電池性能影響測試分析
14. 質子交換膜燃料電池氣體擴散層之材料改良與性能分析
15. 以準分子雷射處理奈米碳管薄膜提升染料敏化太陽能電池之光電特性