跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭凱麟
研究生(外文):Kai-Ling Peng
論文名稱:應用臨場照光濕式環境穿透式電子顯微鏡觀測二氧化鈦光催化反應
論文名稱(外文):Apply in-situ lightening system for observing photo-catalytic reaction of titanium dioxide in liquid environment TEM
指導教授:陳福榮陳福榮引用關係
指導教授(外文):Fu-Rong Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:電子顯微鏡二氧化鈦光催化裂解水表面非晶化
外文關鍵詞:transmission electron microscopytitanium dioxidelight-induced water splitting reactionsurface amorphization phenomenon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文主要發展臨場光誘發分析技術應用於電子顯微鏡中。傳統的電子顯微鏡,由於腔體必須保持在高度真空的環境,因此,濕式樣品的分析將會受到限制。針對此問題,研究中利用本實驗室所設計開發的微型化濕式環境腔體,將液體樣品封裝於微型環境腔體內,進而能於穿透式電子顯微鏡中進行觀測。另一方面,開發光纖導入系統之引光樣品桿,並搭配濕式環境腔體,即可在奈米的尺度下,進行臨場光誘發反應之觀測。並且成功利用自製的光強度偵測器,進行此引光樣品桿光強度量測。
本論文研究中,也利用自行開發之光系統於奈米尺度下臨場觀測到銳鈦礦結構二氧化鈦在液態的環境下,由紫外光引發所產生的表面非晶化現象。也成功臨場觀測到由紫外光引發所產生的二氧化鈦水裂解產氫反應。而在非晶層定性分析的部分,使用電子能量損失能譜技術,成功定義出在非晶層區域,鈦的氧化價態的改變,由原本的四價,轉變成為二價。並由此實驗結果,推測了紫外光催化二氧化鈦裂解水的反應機制。

In this study, we design a fiber-based lightening TEM holder which is compatible with JEOL 2010F and contains a light source illuminating sample along the holder axis that allows sample to be exposed to electron beam and light at the same time. TEM chamber must maintain at ultra-high vacuum environment, so the samples are confined to be in solid state. In order to observe wet samples in TEM, we use the Wet-Cell chips which was designed by our laboratory. This fiber-based lightening TEM holder also can be integrated with Wet Cell chip and provide liquid environment for TEM observation. And it also offers us a chance to in-situ observe the photo-catalytic reaction in real reactional environment.
More importantly, we successfully observe the surface amorphization phenomenon in anatase titanium dioxide during UV light irradiation in liquid environment. We also observed the nano-bubbles generation reaction induced by UV light. Use EELS analysis techniques to qualitatively define the oxidation state of titanium in the surface amorphous layer. The valence change is relative to the water splitting reaction mechanism which is induced by UV light through photo-catalysts such as titanium dioxide.


第一章 緒論 1
1.1電子顯微鏡之發展與演進 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 微型環境腔體元件 4
2.2流體交換系統 7
2.3新型臨場觀測技術開發 10
2.4半導體材料之光觸媒反應 12
2.4.1光觸媒介紹 12
2.4.2光觸媒產氫反應 15
2.5二氧化鈦表面非晶化 19
第三章 實驗方法 25
3.1實驗大綱 25
3.2瞬時光誘發反應臨場觀測之光源系統架設 25
3.2.1光纖管導入光束系統( Fiber-based light-emitting system ) 26
3.2.2 TEM 引光樣品桿(Lightening holder) 28
3.2.3 光強度量測樣品桿 29
3.3微型環境腔體元件製備 30
3.3.1微型元件製程材料與設備 30
3.3.2 實驗步驟 30
3.4光觸媒反應 33
3.4.1 實驗材料 33
3.4.2實驗方法 34
3.5 瞬時臨場觀測光催化反應之觀察儀器 37
3.5.1熱燈絲穿透式電子顯微鏡 37
第四章 結果與討論 38
4.1光纖導入光束系統(FIBER-BASED LIGHT EMITTING SYSTEM) 38
4.1.1光纖導入光束系統的建立 38
4.1.1光強度的校正 40
4.2 TEM引光樣品桿(LIGHTENING HOLDER) 43
4.3 微型環境腔體晶片及二氧化鈦分析 47
4.3.1微型環境腔體晶片品質確定 47
4.3.2 二氧化鈦材料分析 48
4.3.3 溶液存在與否之確認 50
4.4 二氧化鈦非晶層之觀察 50
4.4.1 P25二氧化鈦奈米顆粒之非晶層觀察 50
4.4.2 純銳鈦礦結構之二氧化鈦液態環境非晶層觀察 51
4.4.3 P25 二氧化鈦乘載白金之液態環境非晶層觀察 74

[1] K. Kaznacheyev, a Osanna, and B. Winn, “Sealed cell for in-water measurements.,” AIP Conf. Proc., no. 507, pp. 395–400, 2000.
[2] K.-L. Liu, C.-C. Wu, Y.-J. Huang, H.-L. Peng, H.-Y. Chang, P. Chang, L. Hsu, and T.-R. Yew, “Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions.,” Lab Chip, vol. 8, no. 11, pp. 1915–1921, 2008.
[3] D. B. Peckys, G. M. Veith, D. C. Joy, and N. de Jonge, “Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope,” PLoS One, vol. 4, no. 12, p. e8214, 2009.
[4] T.-W. Huang, S.-Y. Liu, Y.-J. Chuang, H.-Y. Hsieh, C.-Y. Tsai, Y.-T. Huang, U. Mirsaidov, P. Matsudaira, F.-G. Tseng, C.-S. Chang, and F.-R. Chen, “Self-aligned wet-cell for hydrated microbiology observation in TEM,” Lab Chip, vol. 12, no. 2, p. 340, 2012.
[5] N. de Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 7, pp. 2159–2164, 2009.
[6] N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy, vol. 110, no. 9, pp. 1114–1119, 2010.
[7] B. K. Miller and P. a Crozier, “System for In Situ UV-Visible Illumination of Environmental Transmission Electron Microscopy Samples,” Microsc Microanal, vol. 19, no. 2, pp. 461–469, 2013.
[8] A. Kudo, “Photocatalyst materials for water splitting,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 31–38, 2003.
[9] M. Grätzel, “Photoelectrochemical cells,” vol. 414, no. November, 2001.
[10] a Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode.,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
[11] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev., vol. 38, no. 1, pp. 253–278, 2009.
[12] N. Alenzi, W. S. Liao, P. S. Cremer, V. Sanchez-Torres, T. K. Wood, C. Ehlig-Economides, and Z. Cheng, “Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films,” Int. J. Hydrogen Energy, vol. 35, no. 21, pp. 11768–11775, 2010.
[13] W. Lin, W. Yang, I. Huang, T. Wu, and Z. Chung, “Hydrogen Production from Methanol / Water Photocatalytic Decomposition Using Pt / TiO 2 - x N x Catalyst,” no. 5, pp. 2192–2196, 2009.
[14] Y. Z. Yang, C. H. Chang, and H. Idriss, “Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh),” Appl. Catal. B Environ., vol. 67, no. 3–4, pp. 217–222, 2006.
[15] N. Wu, “Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution,” Int. J. Hydrogen Energy, vol. 29, no. 15, pp. 1601–1605, 2004.
[16] S. Sakthivel, M. . Shankar, M. Palanichamy, B. Arabindoo, D. . Bahnemann, and V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst,” Water Res., vol. 38, no. 13, pp. 3001–3008, 2004.
[17] F. Cavalca, a B. Laursen, B. E. Kardynal, R. E. Dunin-Borkowski, S. Dahl, J. B. Wagner, and T. W. Hansen, “In situ transmission electron microscopy of light-induced photocatalytic reactions,” Nanotechnology, vol. 23, no. 7, p. 075705, 2012.
[18] Y. He, A. Tilocca, O. Dulub, A. Selloni, and U. Diebold, “Local ordering and electronic signatures of submonolayer water on anatase TiO2(101).,” Nat. Mater., vol. 8, no. 7, pp. 585–589, 2009.
[19] S. Tan, H. Feng, Y. Ji, Y. Wang, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. G. Hou, “Observation of photocatalytic dissociation of water on terminal Ti sites of TiO 2(110)-1 × 1 surface,” J. Am. Chem. Soc., vol. 134, no. 24, pp. 9978–9985, 2012.
[20] L. Zhang, B. K. Miller, and P. a Crozier, “Atomic Level In-situ Observation of Surface Amorphization in Anatase Nanocrystals During Light Irradiation in Water Vapor.,” Nano Lett., pp. 2–7, 2013.
[21] S. Benkoula, O. Sublemontier, M. Patanen, C. Nicolas, F. Sirotti, A. Naitabdi, F. Gaie-Levrel, E. Antonsson, D. Aureau, F.-X. Ouf, S. Wada, A. Etcheberry, K. Ueda, and C. Miron, “Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles.,” Sci. Rep., vol. 5, no. October, p. 15088, 2015.
[22] E. Stoyanov, F. Langenhorst, and G. Steinle-Neumann, “The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases,” Am. Mineral., vol. 92, no. 4, pp. 577–586, 2007.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top