|
1. Kurland, N.E., et al., Self-assembly mechanisms of silk protein nanostructures
on two-dimensional surfaces. Soft Matter, 2012. 8(18): p. 4952-4959.
2. Hazar, M., et al., Modulating material interfaces through biologically-inspired
intermediates. Applied Physics Letters, 2011. 99(23): p. -.
3. Darwich, S., K. Mougin, and H. Haidara, From highly ramified, large scale
dendrite patterns of drying "alginate/Au NPs" solutions to capillary
fabrication of lab-scale composite hydrogel microfibers. Soft Matter, 2012.
8(4): p. 1155-1162.
4. Imai, H., Self-Organized Formation of Hierarchical Structures, in
Biomineralization I, K. Naka, Editor. 2007, Springer Berlin Heidelberg. p.
43-72.
5. Noorduin, W.L., et al., Rationally Designed Complex, Hierarchical
Microarchitectures. Science, 2013. 340(6134): p. 832-837.
6. Mhíocháin, T.R.N. and J.M.D. Coey, Chirality of electrodeposits grown in a
magnetic field. Physical Review E, 2004. 69(6): p. 061404.
7. Ma, Y.R., et al., Hierarchical, star-shaped PbS crystals formed by a simple
solution route. Crystal Growth & Design, 2004. 4(2): p. 351-354.
8. Chen, X.Y., et al., Hierarchical growth and shape evolution of HgS dendrites.
Crystal Growth & Design, 2005. 5(1): p. 347-350.
9. Cao, M.H., et al., Single-crystal dendritic micro-pines of magnetic
alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties.
Angewandte Chemie-International Edition, 2005. 44(27): p. 4197-4201.
10. Kniep, R. and S. Busch, Biomimetic growth and self-assembly of fluorapatite
aggregates by diffusion into denatured collagen matrices. Angewandte
Chemie-International Edition in English, 1996. 35(22): p. 2624-2626.
11. Busch, S., U. Schwarz, and R. Kniep, Morphogenesis and structure of human
teeth in relation to biomimetically grown fluorapatite-gelatine composites.
Chemistry of Materials, 2001. 13(10): p. 3260-3271.
12. Busch, S., U. Schwarz, and R. Kniep, Chemical and structural investigations
of biomimetically grown fluorapatite-gelatin composite aggregates. Advanced
Functional Materials, 2003. 13(3): p. 189-198.
13. Yu, S.H., et al., Biomimetic crystallization of calcium carbonate spherules
with controlled surface structures and sizes by double-hydrophilic block
copolymers. Advanced Functional Materials, 2002. 12(8): p. 541-545.
56
14. Yu, S.H., et al., Growth and self-assembly of BaCrO4 and BaSO4 nanofibers
toward hierarchical and repetitive superstructures by polymer-controlled
mineralization reactions. Nano Letters, 2003. 3(3): p. 379-382.
15. Imai, H., T. Terada, and S. Yamabi, Self-organized formation of a hierarchical
self-similar structure with calcium carbonate. Chemical Communications,
2003(4): p. 484-485.
16. Imai, H., et al., Formation of calcium phosphate having a hierarchically
laminated architecture through periodic precipitation in organic gel.
Chemical Communications, 2003(15): p. 1952-1953.
17. Terada, T., S. Yamabi, and H. Imai, Formation process of sheets and helical
forms consisting of strontium carbonate fibrous crystals with silicate. Journal
of Crystal Growth, 2003. 253(1-4): p. 435-444.
18. Imai, H., et al., Self-organized formation of porous aragonite with silicate.
Journal of Crystal Growth, 2002. 244(2): p. 200-205.
19. Fukuyo, T. and H. Imai, Morphological evolution of silver crystals produced
by reduction with ascorbic acid. Journal of Crystal Growth, 2002. 241(1-2): p.
193-199.
20. García-Ruiz, J.M., E. Melero-García, and S.T. Hyde, Morphogenesis of
Self-Assembled Nanocrystalline Materials of Barium Carbonate and Silica.
Science, 2009. 323(5912): p. 362-365.
21. García-Ruiz, J.M., et al., Self-Assembled Silica-Carbonate Structures and
Detection of Ancient Microfossils. Science, 2003. 302(5648): p. 1194-1197.
22. Zuppiroli, L., et al., Self-assembled monolayers as interfaces for organic
opto-electronic devices. European Physical Journal B, 1999. 11(3): p.
505-512.
23. Zhu, J., J. Ni, and A.J. Shih, Robust Machine Tool Thermal Error Modeling
Through Thermal Mode Concept. Journal of Manufacturing Science and
Engineering-Transactions of the Asme, 2008. 130(6).
24. Ming, N.B., M. Wang, and R.W. Peng, NUCLEATION-LIMITED
AGGREGATION IN FRACTAL GROWTH. Physical Review E, 1993. 48(1): p.
621-624.
25. Meredith, D., Practice tool condition monitoring. Manufacture Engineering
1988. 120(1): p. 34-39.
26. Debeljak, M. and S. Dzeroski, Decision Trees in Scological Modelling in
Modelling Complex Ecological Dynamics. 2001, Berlin Heidelberg: Springer.
27. Cheng, C.-M. and P.R. LeDuc, Creating Ordered Small-Scale
Biologically-Based Rods through Force-Controlled Stamping. Journal of the
American Chemical Society, 2007. 129(31): p. 9546-9547.
57
28. Bogwe, R., Self-assembly: a review of recent developments. Assembly
Automation, 2008. 28(3): p. 211-215.
29. Altintas, Y., Research on Metal Cutting, Machine Tool Vibrations and
Control. Journal of the Japan Society for Precision Engineering, 2011. 77(5): p.
470-471.
30. Kim, T., et al., Large-Scale Graphene Micropatterns via
Self-Assembly-Mediated Process for Flexible Device Application. Nano
Letters, 2012. 12(2): p. 743-748.
31. Parviz, B.A., D. Ryan, and G.M. Whitesides, Using self-assembly for the
fabrication of nano-scale electronic and photonic devices. Ieee Transactions
on Advanced Packaging, 2003. 26(3): p. 233-241.
32. Morris, C.J., S.A. Stauth, and B.A. Parviz, Self-assembly for microscale and
nanoscale packaging: Steps toward self-packaging. Ieee Transactions on
Advanced Packaging, 2005. 28(4): p. 600-611.
33. Ruiz-Carretero, A., et al., Stepwise self-assembly to improve solar cell
morphology. Journal of Materials Chemistry A, 2013. 1(38): p. 11674-11681.
34. Macaraig, L., T. Sagaw, and S. Yoshikawa, Self-Assembly Monolayer
Molecules for the Improvement of the Anodic Interface in Bulk Heterojunction
Solar Cells. Energy Procedia, 2011. 9(0): p. 283-291.
35. Kennedy, R.D., et al., Self-Assembling Fullerenes for Improved
Bulk-Heterojunction Photovoltaic Devices. Journal of the American Chemical
Society, 2008. 130(51): p. 17290-+.
36. Dang, X.N., et al., Virus-templated self-assembled single-walled carbon
nanotubes for highly efficient electron collection in photovoltaic devices.
Nature Nanotechnology, 2011. 6(6): p. 377-384.
37. Moons, E., Conjugated polymer blends: linking film morphology to
performance of light emitting diodes and photodiodes. Journal of
Physics-Condensed Matter, 2002. 14(47): p. 12235-12260.
38. Mu, W. and N.B. Ming, INSITU OBSERVATION OF
SURFACE-TENSION-INDUCED OSCILLATION OF AQUEOUS-SOLUTION
FILMS IN NEEDLE-LIKE CRYSTAL-GROWTH. Physical Review A, 1991.
44(12): p. R7898-R7901.
39. Sun, Y.L., et al., Lloyd's mirror interferometer using a single-mode fiber
spatial filter. Journal of Vacuum Science & Technology B, 2013. 31(2).
40. Su, H.-W., M.-S. Ho, and C.-M. Cheng, Probing characteristics of collagen
molecules on various surfaces via atomic force microscopy. Applied Physics
Letters, 2012. 100(23): p. -.
58
41. Smith, H.I., Low cost nanolithography with nanoaccuracy. Physica E, 2001.
11(2-3): p. 104-109.
42. Chang, E.C., et al., Improving feature size uniformity from interference
lithography systems with non-uniform intensity profiles. Nanotechnology,
2013. 24(45).
43. Kobayashi, R., Modeling and numerical simulations of dendritic crystal
growth. Physica D: Nonlinear Phenomena, 1993. 63(3–4): p. 410-423.
44. Karma, A. and W.-J. Rappel, Quantitative phase-field modeling of dendritic
growth in two and three dimensions. Physical Review E, 1998. 57(4): p.
4323-4349.
45. Chang, E.C., et al., Nanopost-Guided Self-Organization of Dendritic
Inorganic Salt Structures. Langmuir, 2014. 30(36): p. 10940-10949.
|