( 您好!臺灣時間:2021/03/03 20:31
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Lin, Chang-Shiun
論文名稱(外文):Application of the Intraoperative Dual Photon Emission Computed Tomography System in Sentinel Lymph Node Detection: A Simulation Study
指導教授(外文):Chuang, Keh-Shih
外文關鍵詞:gamma probeintraoperativegamma cameraSLNSentinel Lymph Node
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前哨淋巴結(SLN)理論已是目前臨床上用於早期乳癌確認的標準程序之一。此程序需有術中造影系統的輔助,方可達預期結果。許多二維造影系統(2-D probe)與一提供三維(3-D)資訊的手持式單光子發射斷層掃描系統(freehand SPECT, fhSPECT)已被應用於提高術中前哨淋巴別定位的正確率。然2-D造影系統因缺乏深度資訊,易受前哨淋巴結附近的背景活度影響,而劣化其定位的表現;fhSPECT造影系統雖可提供良好的前哨淋巴結定位結果,但需使用複雜的統計重建法以產生影像。於此研究中,我們提出一新穎的術中3-D造影系統,雙光子斷層造影系統(DuPECT),以連結術前透過先進儀器(PET、CT、SPECT、MRI…)得到的影像及術中得到的資訊,並提高SLN定位的準確度及降低偽陰性率(false negative rate)。此系統被設計來造影衰變(decay)過程中,會同時釋出兩個以上伽馬射線(cascaded gamma-ray)之放射性核種(如,Se-75與In-111)。DuPECT系統由一對以 LaBr3閃爍晶體構成的偵檢器(detector)、準值系統(collimation system)及符時線路(coincidence circuit)組成。此模擬研究中,平行孔(parallel hole)與平行板(slat)準值系統分別掛載於兩偵檢器前方,用以限制光子對進入偵檢器的方向與角度。藉由光子對被偵檢器記錄的位置和此二準直儀的幾何特性,分別可回推出直線與平面的光子飛行路徑。此直線與平面的交點即為射源所在位置。此研究中,Se-75(物理半衰期為 120天)被用於驗證DuPECT的概念、評估其表現以及最佳化此系統的設計;所有實驗均透過本實驗室發展的蒙地卡羅軟體完成。結果顯示,隨機事件之量與給予的活度呈正比;散射事件的數量在不同活度的實驗中均低於1.2 count/s (cps)。DuPECT系統僅可提供0.23±0.01 cps/MBq的靈敏度,此數值明顯低於多數2-D術中造影系統的表現(6.5–2,200 cps/MBq)。在影像模擬實驗中,此系統僅可勉強在由兩個鄰近於四個高活度注射點的前哨淋巴結與低背景活度構成的假體中,鑑別出前哨淋巴結的位置;當高活度注射點被排除在照野外時,兩個前哨淋巴結則可被清楚的鑑別。此結果指出,高活度注射點會嚴重的劣化影像品質。我們提出針孔-平行板(pinhole-slat) 的準直系統,以抑低注射點造成的影響。初步結果顯示,此準直系統可成功的排除高活度注射點帶來的影響。In-111與延遲時間窗校正技術 (delay-time-window technique, DTW) 的可行性亦於本研究中被評估。In-111因有合適的伽馬射線能量(171與245 keV)、較短的半衰期(2.8天)和較低的活度–劑量轉換因子,所以也是其中一有潛力應用於DuPECT系統上的放射性核種。初步結果顯示,In-111的245 keV伽馬射線因有85 ns的lifetime,會造成隨機事件數量明顯增加而不適用於目前的DuPECT系統。延遲時間窗校正技術(DTW)被廣泛應用於商用正子斷層掃描(PET)儀的隨機事件校正上;但在DuPECT系統上的表現卻不符預期。綜觀研究結果,DuPECT可成功偵測前哨淋巴結所在位置,為術中前哨淋巴結定位提供另一種選擇。系統的低靈敏度可能會限制此系統的應用,未來得在偵檢器材料及偵檢系統的幾何投入更多研究,以提升系統靈敏度。此外,DuPECT系統引入使用非單光子射源(cascaded isotope)之概念,我們期望此系統與概念能做為未來放射性藥品的發展的其中一個引子。
The sentinel lymph node (SLN) hypothesis is applied as part of the standard procedure for identifying early-stage breast cancer. Thus, an imaging system that can locate SLNs in operating rooms is desired. Several 2-D probe imaging systems and a freehand single-photon emission-computed tomography (fhSPECT) system have been proposed. However, 2-D probe imaging systems are affected by shine-through and shadowing effects. Here, we proposed an alternative to 3D imaging systems, i.e., a dual-photon emission computed tomography (DuPECT) system, which integrates both preoperative and intraoperative information to locate SLNs using cascade photons emitted isotopes such as Se-75 and In-111. The system consists of a LaBr3-based probe and planar head, a collimation system, and a coincidence circuit. When two photons from each disintegration were detected simultaneously, the slat and parallel-hole collimator define a plane and a line, respectively, which represent the possible flight paths of each photon. SLNs can be located using the line-plane intersection. In this study, Se-75 was used to evaluate the DuPECT concept, performance, and optimization of collimator configurations using Monte Carlo software developed in our laboratory. The result of the performance evaluation indicates that the randoms rate increases with increased initial activities, while the scatter rate is lower than 1.2 count/s for various activities. The sensitivity is 0.23±0.01 cps/MBq, which is significantly lower than that of most 2-D probe imaging systems (6.5–2,200 cps/MBq). In a simulated imaging study, four injection sites and two LNs placed at various depths are minimally distinguishable. However, the LNs are clearly identifiable in the absence of injection sites, indicating that photons emitted from the injection sites seriously deteriorate the image quality. To reduce the influence of injection sites, a pinhole-slat collimation system was proposed. Preliminary results show that the pinhole-slat collimation system succeeds in eliminating photons emitted from injection sites. In addition, a feasibility study of In-111 was conducted with a delay-time-window technique. In-111 was another potential cascade isotope for its appropriategamma energies (171 and 245 keV), short half-life (2.8 days), and relative low dose equivalent. Preliminary result indicates that In-111 is not appropriate for the DuPECT system due to its relative long half-time (85 ns) of the 245 keV gamma-ray. The number of random events increases significantly, leading to failed SLNs identification, as a wide coincidence time window is needed to accommodate the long life-lived 245 keV gamma. The proposed three-dimensional imaging system has the potential to identify injection sites and SLNs. However, difficulties with the low sensitivity for LN detection and in the choice of appropriate radioisotope must be overcome before its clinical usage.
中文摘要 III
致謝 V
2.1. 1-D Probe System 5
2.2. 2-D Probe System 8
2.2.1. Scintillator-Based 2-D Probe System 10 Per-Operative Compact Imager (POCI) 10 Miniγ-Camera (CarolIRes) 11
2.2.2. Semiconductor-Based 2-D Probe System 12 Small Cadmium Telluride γ-Camera (SSGC) 12 MediPROBE 12
2.2.3. Routines and Challenges of 2-D Probe System 13
2.3. 3-D Probe System 15
3.1. Introduction 17
3.2. Materials and Method 20
3.2.1. Concept of DuPECT System 20
3.2.2. System Description 21
3.2.3. Validation 23 Probe Positioning 24 Resolution and Sensitivity Study 25 Measurements of True, Scatter, and Random Rates 26 Imaging Study 27
3.3. Results 30
3.3.1. Probe Positioning 30
3.3.2. Resolution and Sensitivity Study 31
3.3.3. Measurements of True, Scatter and Random Rates 33
3.3.4. Imaging Study 34
3.4 Discussion 36
4.1. Introduction 40
4.2. Materials and Methods 43
4.2.1. Feasibility Study of In-111 and Delay-Time-Window Method 43
4.2.2. Analytical Analyses of Collimators 45 Parallel-Hole Collimation 45 Slat Collimation 46 Pinhole Collimation 47 Fan-beam Collimation 47 Comparison of Various Collimations 49
4.2.3. Eliminate Injection–Site Detection 51
4.3. Results 53
4.3.1. Feasibility Study of In-111 and Delay-Time-Window Method 53
4.3.2. Analytical Analyses of Collimators 55
4.4. Discussion 58

Alexiev, D., Mo, L., Prokopovich, D. A., et al. (2008). Comparison of LaBr3 and LaCl3 With NaI and CZT detector. IEEE Trans Nucl. Sci., 55(3).
Alitalo, K., Tammela, T., & Petrova, T. V. (2005). Lymphangiogenesis in Development and Human Disease. Nature, 438(7070), 946-953.
Amersi, F., & Hansen, N. (2006). The Benefits and Limitations of Sentinel Lymph Node Biopsy. Curr. Treat. Options in Oncol., 7(2), 141-151. doi: 10.1007/s11864-006-0049-y
Anger, H. O. (1964). Scintillation Camera with Multichannel Collimators. J. Nucl. Med., 5, 515-531.
Antonieva, N. M., Bashilov, A. A., Dzhelepov, B. S., et al. (1960). Decay of Gd-146 and Eu-146. Nuclear Physics, 14(3), 438-442. doi: http://dx.doi.org/10.1016/0029-5582(60)90462-4 and http://ie.lbl.gov/toi/nuclide.asp?iZA=640146
Balsenc, L., Beeler, R., & Monnier, D. (1970). Chaine Radioactive Lors du Dosage de lhafnium par Activation Neutronique et Spectre du Lutetium-178. J. Radioanal. Chem., 4(2), 187-195. doi: 10.1007/BF02513660
Bartolazzi, A., D'Alessandria, C., Parisella, M. G., et al. (2008). Thyroid Cancer Imaging in Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3. PLoS ONE, 3(11), e3768.
Bhat, M. R. (1992). Evaluated Nuclear Structure Data File (ENSDF). In S. Qaim (Ed.), Nuclear Data for Science and Technology (pp. 817-821): Springer Berlin Heidelberg.
Bluemel, C., Herrmann, K., Müller–Richter, U., et al. (2014). Freehand SPECT-Guided Sentinel Lymph Node Biopsy in Early Oral Squamous Cell Carcinoma. Head & Neck, n/a-n/a. doi: 10.1002/hed.23596
Bluemel, C., Schnelzer, A., Okur, A., et al. (2013). Freehand SPECT for Image-Guided Sentinel Lymph Node Biopsy in Breast Cancer. Eur. J. Nucl. Med., 40(11), 1656-1661. doi: 10.1007/s00259-013-2473-0
Browne, E. (1994). Nuclear Data Sheets Update for A = 180. Nuclear Data Sheets, 71(1), 81-180. doi: http://dx.doi.org/10.1006/ndsh.1994.1005
Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2003). Physics in Nuclear Medicine (3rd ed.). Philadelphia, PA:Saunders: Elsevier Health Sciences.
Cochran, E. R. (2010). Silicon Detectors for PET and SPECT. (Ph.D), Ohio State University. Retrieved from http://etd.ohiolink.edu/send-pdf.cgi/Cochran%20Eric%20R.pdf?osu1285082615
Cody, H. S. (1999). Sentinel Lymph Node Mapping in Breast Cancer. Breast Cancer, 6(1), 13-22. doi: 10.1007/BF02966901
Cserni, G., Amendoeira, I., Apostolikas, N., et al. (2003). Pathological Work-up of Sentinel Lymph Nodes in Breast Cancer. Review of Current Data to Be Considered for the Formulation of Guidelines. Eur J Cancer, 39(12), 1654-1667. doi: http://dx.doi.org/10.1016/S0959-8049(03)00203-X
De Cicco, C., Cremonesi, M., Luini, A., et al. (1998). Lymphoscintigraphy and Radioguided Biopsy of the Sentinel Axillary Node in Breast Cancer. J Nuci Med, 39(12), 2080-2084.
Edwards, W. F., & Boehm, F. (1961). Decay of Hf-180m. Phys.Rev., 121(5), 1499-1503.
Fowler, J. C., Solanki, C. K., Barber, R. W., et al. (2007). Dual-Isotope Lymphoscintigraphy Using Albumin Nanocolloid Differentially Labeled With In-111 and Tc-99m. Acta Oncologica, 46(1), 105-110. doi: doi:10.1080/02841860600635854
Gallagher, C. J., & Nielsen, H. L. (1962). Decay of 2.1-HourTa-178. Phys. Rev., 126(4), 1520-1524.
Gentilini, O., Cremonesi, M., Trifirò, G., et al. (2004). Safety of Sentinel Node Biopsy in Pregnant Patients with Breast Cancer. Ann Oncol., 15(9), 1348-1351. doi: 10.1093/annonc/mdh355
Giammarile, F., Alazraki, N., Aarsvold, J., et al. (2013). The EANM and SNMMI Pactice Guideline for Lymphoscintigraphy and Sentinel Node Localization in Breast Cancer. Eur J Nucl Med Mol Imaging, 40(12), 1932-1947. doi: 10.1007/s00259-013-2544-2
Gray, R. J., Pockaj, B. A., & Roarke, M. C. (2004). Injection of 99mTc-Labeled Sulfur Colloid the Day Before Operation for Breast Cancer Sentinel Lymph Node Mapping Is as Successful as Injection the Day of Operation. The American Journal of Surgery, 188(6), 685-689. doi: http://dx.doi.org/10.1016/j.amjsurg.2004.08.053
Harrison, R. L., Vannoy, S. D., Haynor, D. R., et al. (1993). Preliminary Experience With The Photon History Generator Module of a Public-domain Simulation System for Emission Tomography. Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record., 1154-1158. doi: 10.1109/nssmic.1993.701828
Heuveling, D. A., van Weert, S., Karagozoglu, K. H., et al. (2015). Evaluation of the Use of Freehand SPECT for Sentinel Node Biopsy in Early Stage Oral Carcinoma. Oral Oncology, 51(3), 287-290. doi: http://dx.doi.org/10.1016/j.oraloncology.2014.12.001
Hinz, T., Ahmadzadehfar, H., Wierzbicki, A., et al. (2012). Sentinel Lymph Node Status as Most Important Prognostic Factor in Patients With High-Risk Cutaneous Melanomas (Tumour Thickness >4.00 mm): Outcome Analysis from a Single Institution. Eur J Nucl Med Mol Imaging, 39(8), 1316-1325. doi: 10.1007/s00259-012-2139-3
Hlavac, S. (2000). Selection and Evaluation of Gamma Decay Standards for Detector Calibration Using Coincidence Method (Vol. 31, pp. 65-69). Braunschweig, Germany: IAEA INDS(NDS)-415.
Hoffman, E. J., Tornai, M. P., Janecek, M., et al. (1999). Intraoperative Probes and Imaging Probes: Review Article. Eur J Nucl Med, 26(913-935).
ICRP. (1987). ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals., 18, 1-4.
ICRP. (1998). ICRP Publication 80. Ann. ICRP 28 (3). Radiation dose to patients from radiopharmaceuticals (addendum to ICRP publication 53). 28(3).
ICRP. (2008). ICRP Publication 106. Radiation Dose to Patients from Radiopharmaceuticals (a Third Addendum to ICRP Publication 53). 38(1-2).
Jan, S., Santin, G., Strul, D., et al. (2004). GATE: A Simulation Toolkit for PET and SPECT. Phys. Med. Biol., 49(19), 4543-2561.
Jaszczak, R. J., Floyd, C. E., Jr., et al. (1986). Cone Beam Collimation for Single Photon Emission Computed Tomography: Analysis, Simulation, and Image Reconstruction Using Filtered Backprojection. Med. Phys. , 13(4), 484-489.
Kapteijn, B. A. E., Nieweg, O. E., Muller, S. H., et al. (1997). Validation of Gamma Probe Detection of the Sentinel Node in Melanoma. J Nuci Med, 38(3), 362-366.
Keleher, A., Wendt, R., Delpassand, E., et al. (2004). The Safety of Lymphatic Mapping in Pregnant Breast Cancer Patients using Tc-99m Sulfur Colloid. Breast J, 10(6), 492-495. doi: 10.1111/j.1075-122X.2004.21503.x
Keszthelyi-Lándori, S., & Hrehuss, G. (1969). Scintillation Response Function and Decay Time of CsI(Na) to Charged Particles. Nucl Instrum Meth, 68(1), 9-12. doi: http://dx.doi.org/10.1016/0029-554X(69)90682-X
Kim, K. H., Bolotnikov, A. E., Camarda, G. S., et al. (2012). New Approaches for Making Large-Volume and Uniform CdZnTe and CdMnTe Detectors. Nuclear Science, IEEE Transactions on, 59(4), 1510-1515. doi: 10.1109/tns.2012.2202917
Knoll, G. F. (1999a). Ch. 8 Inorganic Scintillator Radiation Detection and Measurement (3rd ed., pp. 235): John Wiley & Sons, Inc.
Knoll, G. F. (1999b). Ch. 13 Semiconductor Materials Other Than Silicon or Germanium Radiation Detection and Measurement (3rd ed., pp. 483): John Wiley & Sons, Inc.
Lerman, H., Metser, U., Lievshitz, G., et al. (2006). Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECT-CT. Eur J Nucl Med Mol Imaging 33(3), 329-337. doi: 10.1007/s00259-005-1927-4
Lewellen, T. K. (2008). Recent Developments in PET Detector Technology. Phys. Med. Biol., 53(17), R287.
Liang, Z., & Jaszczak, R. (1990). Comparisons of Multiple Photon Coincidence Imaging Techniques. IEEE Trans Nucl. Sci., 37(3), 1282-1292. doi: 10.1109/23.57378
Lin, C.-S., Lin, H.-H., Ni, Y.-C., et al. (2015). Application of the Intraoperative Dual Photon Emission Computed Tomography System in Sentinel Lymph Node Detection: A Simulation Study. IEEE Trans Nucl. Sci., (in press). doi: 10.1109/TNS.2015.2503479
Lin, H.-H., Chuang, K.-S., Lin, Y.-H., et al. (2014). Efficient Simulation of Voxelized Phantom in GATE With Embedded SimSET Multiple Photon History Generator. Phy. Med. Bio., 59(20), 6231-6250.
Linehan, D. C., Hill, A. K., Akhurst, T., et al. (1999). Intradermal Radiocolloid and Intraparenchymal Blue Dye Injection Optimize Sentinel Node Identification in Breast Cancer Patients. Ann Surg Oncol, 6(5), 450-454. doi: 10.1007/s10434-999-0450-4
Ljungberg, M., Strand, S.-E., & King, M. A. (2012). Monte Carlo Calculations in Nuclear Medicine: Applications in Diagnostic Imaging. 25: CRC Press.
Low-Beer, B. V. A. (1946). Surface Measurements of Radioactive Phosphorus in Breast Tumors as a Possible Diagnostic Method. Science, 104(2704), 399. doi: 10.1126/science.104.2704.399
Lucey, B. C., Stuhlfaut, J. W., & Soto, J. A. (2005). Mesenteric Lymph Nodes Seen at Imaging: Causes and Significance. Radiographics, 25(2), 351-365. doi: 10.1148/rg.252045108
Luo, W., & Cao, Z. (2003). Monte Carlo Simulation for Coincidence Detection of In-111 Cascaded Photons With Innovative Data Processing. Nuclear Science Symposium Conference Record, 2003 IEEE, 5, 3125-3128 Vol.3125. doi: 10.1109/NSSMIC.2003.1352559
Lyman, G. H., Giuliano, A. E., Somerfield, M. R., et al. (2005). American Society of Clinical Oncology Guideline Recommendations for Sentinel Lymph Node Biopsy in Early-Stage Breast Cancer. J Clin Oncol, 23(30), 7703-7720. doi: 10.1200/jco.2005.08.001
Mathelin, C., Salvador, S., Bekaert, V., et al. (2008). A New Intraoperative Gamma Camera for the Sentinel Lymph Node Procedure in Breast Cancer. Anticancer Res, 28(5B), 2859-2864.
Mathelin, C., Salvador, S., Huss, D., et al. (2007). Precise Localization of Sentinel Lymph Nodes and Estimation of Their Depth Using a Prototype Intraoperative Mini γ-Camera in Patients with Breast Cancer. J. Nucl. Med., 48(4), 623-629. doi: 10.2967/jnumed.106.036574
Mathelin, C., Savdor, S., Bekaert, V., et al. (2008). A New Intraoperative Gamma for the Sentinel Lymph Node Procedure in Breast Cancer. Anticancer Res., 28(5B), 2859-2864.
McCarter, M. D., Yeung, H., Yeh, S., et al. (2001). Localization of the Sentinel Node in Breast Cancer: Identical Results With Same-Day and Day-Before Isotope Injection. Annals of Surgical Oncology, 8(8), 682-686. doi: 10.1007/s10434-001-0682-4
McMasters, K. M., Tuttle, T. M., Carlson, D. J., et al. (2000). Sentinel Lymph Node Biopsy for Breast Cancer: A Suitable Alternative to Routine Axillary Dissection in Multi-Institutional Practice When Optimal Technique Is Used. J. Clin. Oncol., 18(13), 2560-2566.
Menard, L., Charon, Y., Solal, M., et al. (1998). POCI: a Compact High Resolution and Gamma Camera for Intra-Operative Surgical Use. IEEE Trans Nucl. Sci., 45(3), 1293-1297. doi: 10.1109/23.682019
Mihaljevic, A. L., Rieger, A., Belloni, B., et al. (2014). Transferring Innovative Freehand SPECT to the Operating Room: First Experiences with Sentinel Lymph Node Biopsy in Malignant Melanoma. Eur J Surg Oncol, 40(1), 42-48. doi: http://dx.doi.org/10.1016/j.ejso.2013.09.005
Mitterhauser, M., Wadsak, W., Mien, L.-K., et al. (2003). The Labelling of Nanocoll® With [In-111] for Dual-Isotope Scanning. Appl Radiat Isot, 59(5–6), 337-342. doi: http://dx.doi.org/10.1016/j.apradiso.2003.09.002
Moore, S. C., Kouris, K., & Cullum, I. (1992). Collimator Design for Single Photon Emission Tomography. Eur J Nucl Med 19(2), 138-150. doi: 10.1007/BF00184130
Moyer, R. A. (1974). A Low-Energy Multihole Converging Collimator Compared With a Pinhole Collimator J. Nucl. Med., 15(2), 59-64.
Newman, E. A., & Newman, L. A. (2007). Lymphatic Mapping Techniques and Sentinel Lymph Node Biopsy in Breast Cancer. Surg Clin N Am, 87(2), 353-364. doi: http://dx.doi.org/10.1016/j.suc.2007.01.013
Nieweg, O. E., Estourgie, S. H., van Rijk, M. C., et al. (2004). Rationale for Superficial Injection Techniques in Lymphatic Mapping in Breast Cancer Patients. J Surg Oncol, 87(4), 153-156. doi: 10.1002/jso.20108
Noguchi, M., Inokuchi, M., & Zen, Y. (2009). Complement of Peritumoral and Subareolar Injection in Breast Cancer Sentinel Lymph Node Biopsy. J Surg Oncol, 100(2), 100-105. doi: 10.1002/jso.21308
Pani, R., Bennati, P., Pellegrini, R., et al. (2011). LaBr3(Ce) and NaI(Tl) performance comparison for single photon emission imaging. IEEE Nucl. Sci. Symp. and Med. Imag. Conf. Rec., 4433-4436. doi: 10.1109/nssmic.2011.6153854
Pani, R., Cinti, M. N., De Notaristefani, F., et al. (2004, 16-22 Oct. 2004). Imaging Performances of LaCl3:Ce Scintillation Crystals in SPECT. Paper presented at the IEEE Nucl. Sci. Symp. Conf. Rec.
Pani, R., Cinti, M. N., Pellegrini, R., et al. (2005). LaBr3:Ce Scintillation Camera. IEEE Nucl. Sci. Symp. Conf. Rec., 4, 2061 - 2065 doi: 10.1109/NSSMIC.2005.1596739
Pani, R., & De Notaristefani, F. (2007). LaBr3:Ce Crystal: The Latest Advance for Scintillation Cameras. Nucl. Instr. Meth. A, 572(1), 268-269.
Peker, L. K. (1990). Nuclear Data Sheets update for A=146: Last Evaluation: L. K. Peker, Nuclear Data Sheets 41, 195 (1984). Nuclear Data Sheets, 60(4), 953-1043. doi: http://dx.doi.org/10.1016/S0090-3752(05)80111-5
Pitre, S., Ménard, L., Ricard, M., et al. (2003). A Hand-Held Imaging Probe for Radio-Guided Surgery: Physical Performance and Preliminary Clinical Experience. Eur. J. Nucl. Med. Mol. Imaging, 30(3), 339-343. doi: 10.1007/s00259-002-1064-2
Pouw, B., de Wit-van der Veen, L. J., Stokkel, M. P. M., et al. (2015). Improved Accuracy and Reproducibility Using a Training Protocol for Freehand-SPECT 3D Mapping in Radio-Guided Surgery. Clinical Nuclear Medicine, 40(9), e457-e460. doi: 10.1097/rlu.0000000000000787
Rink, T., Herser, T., Fitz, H., et al. (2001). Lymphoscintigraphic Sentinel Node Imaging and Gamma Probe Detection in Breast Cancer With Tc-99m Nanocolloidal Albumin: Results of an Optimized Protocol. Clinical Nuclear Medicine, 26(4), 293-298.
Russo, P., Curion, A. S., Mettivier, G., et al. (2011). Evaluation of a CdTe Semiconductor Based Compact Gamma Camera for Sentinel Lymph Node Imaging. Med. Phys., 38(3), 1547-1560.
Russo, P., Mettivier, G., Pani, R., et al. (2009). Imaging Performance Comparison Between a LaBr3:Ce Scintillator Based and a CdTe Semiconductor Based Photon Counting Compact Gamma Camera. Med. Phys., 36(4), 1298-1317. doi: doi:http://dx.doi.org/10.1118/1.3081412
Sanchez, F., Benlloch, J. M., Escat, B., et al. (2004). Design and Tests of a Portable Mini Gamma Camera. Med. Phys., 31(6), 1384-1397.
Schmitz-Feuerhake, I. (1970). Studies on Three-Dimensional Scintigraphy With Gamma-Gamma-Coincidences. Phys. Med. Biol., 15(4), 649-656.
Selverstone, B., Solomon, A., & Sweet, W. (1949). Location of Brain Tumors by Means of Radioactive Phosphorus. JAMA, 140(3), 277-278.
Selverstone, B., Sweet, W. H., & Robinson, C. V. (1949). The Clinical Use of Radioactive Phosphorus in the Surgery of Brain Tumors. Ann Surg, 130(4), 643-650.
Singh, B., & Firestone, R. B. (1995). Nuclear Data Sheets for A = 182. Nuclear Data Sheet, 74, 383-460.
Singh, M. (1983). An Electronically Collimated Gamma Camera for Single Photon Emission Computed Tomography. Part I: Theoretical Considerations and Design Criteria. Med. Phys., 10(4), 421-427. doi: doi:http://dx.doi.org/10.1118/1.595313
Smith, M. F., Majewski, S., & Weisenberger, A. G. (2003). Optimizing Pinhole and Parallel Hole Collimation for Scintimammography with Compact Pixellated Detectors. IEEE Trans Nucl. Sci., 50(321-326).
Solorzano, C. C., Ross, M. I., Delpassand, E., et al. (2001). Utility of Breast Sentinel Lymph Node Biopsy Using Day-Before-Surgery Injection of High-Dose 99mTc-Labeled Sulfur Colloid. Ann Surg Oncol 8(10), 821-827. doi: 10.1007/s10434-001-0821-y
Takahashi, T., & Watanabe, S. (2001). Recent Progress in CdTe and CdZnTe Detectors. IEEE Trans Nucl. Sci., 48(4).
Tsuchimochi, M., Hayama, K., Oda, T., et al. (2008). Evaluation of the Efficacy of a Small CdTe γ-Camera for Sentinel Lymph Node Biopsy. J Nuci Med, 49(6), 956-962. doi: 10.2967/jnumed.108.050740
Valdes Olmos, R. A., Tanis, P. J., Hoefnagel, C. A., et al. (2001). Improved Sentinel Node Visualization in Breast Cancer by Optimizing the Colloid Particle Concentration and Tracer Dosage. Nucl. Med. Commun., 22(5), 579-586.
van der Ent, F. W. C., Kengen, R. A. M., van der Pol, H. A. G., et al. (1999). Sentinel Node Biopsy in 70 Unselected Patients with Breast Cancer: Increased Feasibility by Using 10 mCi Radiocolloid in Combination With a Blue Dye Tracer. European Journal of Surgical Oncology, 25(1), 24-29. doi: http://dx.doi.org/10.1053/ejso.1998.0594
Ward, T. E., & Haustein, P. E. (1971). New K PI = 8- Isomer in 182Hf. Phys. Rev. C, 4(1), 244-246.
Wendler, T., Herrmann, K., Schnelzer, A., et al. (2010). First Demonstration of 3-D Lymphatic Mapping in Breast Cancer Using Freehand SPECT. Eur J Nucl Med Mol Imaging, 37(8), 1452-1461. doi: 10.1007/s00259-010-1430-4
Wieczorek, H., & Goedicke, A. (2006). Analytical Model for SPECT Detectorconcepts. IEEE Trans Nucl. Sci., 53(3).

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔