|
1. Corthout, E.; Barker, A. T.; Cowey, A., Transcranial magnetic stimulation. Which part of the current waveform causes the stimulation? Exp Brain Res 2001, 141 (1), 128-32. 2. Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P., Wireless magnetothermal deep brain stimulation. Science 2015, 347 (6229), 1261821. 3. Yue, K.; Guduru, R.; Hong, J.; Liang, P.; Nair, M.; Khizroev, S., Magneto-electric nano-particles for non-invasive brain stimulation. PloS one 2012, 7 (9). 4. Chou, L. Y.; Ming, K.; Chan, W. C., Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011, 40 (1), 233-45. 5. Hillaireau, H.; Couvreur, P., Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009, 66 (17), 2873-96. 6. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9 (8), 615-27. 7. Conner, S. D.; Schmid, S. L., Regulated portals of entry into the cell. Nature 2003, 422 (6927), 37-44. 8. Schädlich, A.; Caysa, H.; Mueller, T.; Tenambergen, F.; Rose, C.; Göpferich, A.; Kuntsche, J.; Mäder, K., Tumor Accumulation of NIR Fluorescent PEG–PLA Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model. ACS Nano 2011, 5 (11), 8710-8720. 9. Ekkapongpisit, M.; Giovia, A.; Follo, C.; Caputo, G.; Isidoro, C., Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Int J Nanomedicine 2012, 7, 4147-4158. 10. Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A., Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie-International Edition 2007, 46 (30), 5754-5756. 11. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (38), 14265-14270. 12. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nature Biotechnology 2007, 25 (10), 1165-1170. 13. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W., Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 2008, 3 (3), 145-150. 14. Zhang, K.; Fang, H.; Chen, Z.; Taylor, J.-S. A.; Wooley, K. L., Shape Effects of Nanoparticles Conjugated with Cell-Penetrating Peptides (HIV Tat PTD) on CHO Cell Uptake. Bioconjugate Chemistry 2008, 19 (9), 1880-1887. 15. Yoo, J.-W.; Doshi, N.; Mitragotri, S., Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromolecular Rapid Communications 2010, 31 (2), 142-148. 16. Tabata, Y.; Ikada, Y., EFFECT OF THE SIZE AND SURFACE-CHARGE OF POLYMER MICROSPHERES ON THEIR PHAGOCYTOSIS BY MACROPHAGE. Biomaterials 1988, 9 (4), 356-362. 17. Landel, R. F.; Nielsen, L. E., Mechanical properties of polymers and composites. Mechanical properties of polymers and composites 1993. 18. Schneider, M.; Lamy, B., Process for the dehydration of a colloidal dispersion of lipsomes. US Patent 4 1980. 19. Gonçalves, G.; Vila, M.; Portolés, M. T., Nano‐Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Advanced Healthcare Materials 2013. 20. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials 2014, 26 (1), 435-451. 21. Chen, Y.; Chen, P.; Hu, S.; Chen, W. I.; Chen, S., NIR Triggered Synergic Photo chemothermal Therapy Delivered by Reduced Graphene Oxide/Carbon/Mesoporous Silica Nanocookies. Advanced Functional Materials 2014, 24 (4), 451-459. 22. Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B., Ligand-targeted liposome design: challenges and fundamental considerations. Trends in Biotechnology 2014, 32 (1), 32-45. 23. Blattman, J. N.; Greenberg, P. D., Cancer Immunotherapy: A Treatment for the Masses. Science 2004, 305 (5681), 200-205. 24. June, C. H., Principles of adoptive T cell cancer therapy. The Journal of Clinical Investigation 117 (5), 1204-1212. 25. Weiner, L. M.; Surana, R.; Wang, S., Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010, 10 (5), 317-327. 26. Cheng, Y.-s.; Xu, F., Anticancer function of polyinosinic-polycytidylic acid. Cancer Biology & Therapy 2010, 10 (12), 1219-1223. 27. Colapicchioni, V.; Palchetti, S.; Pozzi, D.; Marini, E. S.; Riccioli, A.; Ziparo, E.; Papi, M.; Amenitsch, H.; Caracciolo, G., Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome-silica hybrid nanoparticles. Journal of Materials Chemistry B 2015, 3 (37), 7408-7416. 28. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials 2011, 10 (5), 389-397. 29. Chen, I. A.; Walde, P., From self-assembled vesicles to protocells. Cold Spring Harbor perspectives in biology 2010, 2 (7). 30. Garwood, R., Patterns in Palaeontology: The first 3 billion years of evolution. Palaeontology [online] 2012. 31. Meulen, S. A. J.; Leunissen, M. E., Solid colloids with surface-mobile DNA linkers. Journal of the American Chemical Society 2013, 135 (40), 15129-15134. 32. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 2011, 10 (5), 389-397. 33. Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y., Graphene based materials for biomedical applications. Materials Today 2013, 16 (10), 365-373. 34. Yang, K.; Feng, L.; Liu, Z., The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery 2015, 12 (4), 601-612. 35. Zhang, L.; Zheng, Y.; Jagadeeswaran, G.; Li, Y.; Gowdu, K.; Sunkar, R., Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 2011, 98 (6), 460-468. 36. Frost, R.; Svedhem, S.; Langhammer, C.; Kasemo, B., Graphene Oxide and Lipid Membranes: Size-Dependent Interactions. Langmuir 2016, 32 (11), 2708-2717. 37. Yu, J.; Huang, D.-Y.; Muhammad Zubair, Y.; Hou, Y.-L.; Gao, S., Magnetic nanoparticle-based cancer therapy. Chinese Physics B 2013, 22 (2), 027506. 38. Wu, C.-H.; Cao, C.; Kim, J. H.; Hsu, C.-H.; Wanebo, H. J.; Bowen, W. D.; Xu, J.; Marshall, J., Trojan-Horse Nanotube On-Command Intracellular Drug Delivery. Nano Letters 2012, 12 (11), 5475-5480. 39. Basu, B. N., Electromagnetic theory and applications in beam-wave electronics. Electromagnetic theory and applications in beam-wave electronics 1996. 40. Vagner, I. D.; Lembrikov, B. I.; Wyder, P. R., Electrodynamics of magnetoactive media. Electrodynamics of magnetoactive media 2013. 41. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved synthesis of graphene oxide. ACS nano 2010, 4 (8), 4806-4814. 42. Ulrich, A. S.; Sami, M.; Watts, A., Hydration of DOPC bilayers by differential scanning calorimetry. Biochimica et Biophysica Acta (BBA) - Biomembranes 1994, 1191 (1), 225-230. 43. Biltonen, R. L.; Lichtenberg, D., The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chemistry and Physics of Lipids 1993, 64 (1), 129-142. 44. Davis, J. H.; Clair, J. J.; Juhasz, J., Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophysical Journal 2009, 96 (2), 521-539. 45. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.; Goodwin, A.; Zaric, S.; Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano research 2008, 1 (3), 203-212. 46. Shen, B.; Zhai, W.; Lu, D.; Wang, J.; Zheng, W., Ultrasonication-assisted direct functionalization of graphene with macromolecules. RSC Advances 2012, 2 (11), 4713-4719. 47. Zeng, X.; Tao, W.; Mei, L.; Huang, L.; Tan, C.; Feng, S.-S., Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 2013, 34 (25), 6058-6067. 48. Kruger, N. J., The Bradford method for protein quantitation. Basic protein and peptide protocols 1994, 9-15. 49. Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F., Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angewandte Chemie 2011, 123 (4), 921-925. 50. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters 2008, 8 (1), 36-41. 51. Calizo, I.; Balandin, A.; Bao, W.; Miao, F.; Lau, C., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano letters 2007, 7 (9), 2645-2649. 52. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters 2007, 7 (2), 238-242. 53. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552. 54. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380. 55. Zarrin, H.; Higgins, D.; Jun, Y.; Chen, Z.; Fowler, M., Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. The Journal of Physical Chemistry C 2011, 115 (42), 20774-20781. 56. Liu, H. W.; Huang, W. C.; Chiang, C. S.; Hu, S. H., Arrayed rGOSH/PMASH Microcapsule Platform Integrating Surface Topography, Chemical Cues, and Electrical Stimulation for Three-Dimensional Neuron-Like Cell Growth and Neurite Sprouting. Adv. Funct. Mater 2014, 24, 3715–3724. 57. Youngnam, C.; Riyi, S.; Albena, I.; Richard Ben, B., A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology 2009, 20 (27), 275102. 58. Some, S.; Gwon, A. R.; Hwang, E.; Bahn, G.-h.; Yoon, Y.; Kim, Y.; Kim, S.-H.; Bak, S.; Yang, J.; Jo, D.-G.; Lee, H., Cancer Therapy Using Ultrahigh Hydrophobic Drug-Loaded Graphene Derivatives. Scientific Reports 2014, 4, 6314. 59. Kikuchi, A.; Okano, T., Pulsatile drug release control using hydrogels. Advanced Drug Delivery Reviews 2002, 54 (1), 53-77. 60. Kimura, K.; Yanagida, Y.; Haruyama, T.; Kobatake, E.; Aizawa, M., Electrically induced neurite outgrowth of PC12 cells on the electrode surface. Medical and Biological Engineering and Computing 1998, 36 (4), 493-498. 61. Jaffe, L. F.; Poo, M. M., Neurites grow faster towards the cathode than the anode in a steady field. Journal of Experimental Zoology 1979, 209(1), 115-28. 62. Erskine, L.; McCaig, C. D., Growth Cone Neurotransmitter Receptor Activation Modulates Electric Field-Guided Nerve Growth. Developmental Biology 1995, 171 (2), 330-339. 63. McCaig, C. D.; Sangster, L.; Stewart, R., Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Developmental Dynamics 2000, 217 (3), 299-308. 64. Bueno, F. R.; Shah, S. B., Implications of Tensile Loading for the Tissue Engineering of Nerves. Tissue Engineering Part B: Reviews 2008, 14 (3), 219-233. 65. Dittmann, K.; Mayer, C.; Rodemann, H.-P., Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiotherapy and Oncology 2005, 76 (2), 157-161. 66. Wild, R.; Fager, K.; Flefleh, C.; Kan, D.; Inigo, I.; Castaneda, S.; Luo, F.; Camuso, A.; McGlinchey, K.; Rose, W. C., Cetuximab preclinical antitumor activity (monotherapy and combination based) is not predicted by relative total or activated epidermal growth factor receptor tumor expression levels. American Association for Cancer Research 2006, 5 (1), 104-113. 67. Mukohara, T.; Engelman, J. A.; Hanna, N. H.; Yeap, B. Y.; Kobayashi, S.; Lindeman, N.; Halmos, B.; Pearlberg, J.; Tsuchihashi, Z.; Cantley, L. C.; Tenen, D. G.; Johnson, B. E.; Jänne, P. A., Differential Effects of Gefitinib and Cetuximab on Non–small-cell Lung Cancers Bearing Epidermal Growth Factor Receptor Mutations. Journal of the National Cancer Institute 2005, 97 (16), 1185-1194. 68. Raben, D.; Helfrich, B.; Chan, D. C.; Ciardiello, F.; Zhao, L.; Franklin, W.; Barón, A. E.; Zeng, C.; Johnson, T. K.; Bunn, P. A., The Effects of Cetuximab Alone and in Combination With Radiation and/or Chemotherapy in Lung Cancer. American Association for Cancer Research 2005, 11 (2), 795-805. 69. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews 2011, 63 (3), 136-151. 70. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews 2011, 63 (3), 131-135. 71. Chittasupho, C.; Lirdprapamongkol, K.; Kewsuwan, P.; Sarisuta, N., Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88 (2), 529-538. 72. Zhao, M.; Lei, C.; Yang, Y.; Bu, X.; Ma, H.; Gong, H.; Liu, J.; Fang, X.; Hu, Z.; Fang, Q., Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp. PLoS ONE 2015, 10 (7), e0131429. 73. Lee, S. J.; Min, H. S.; Ku, S. H.; Son, S.; Kwon, I. C.; Kim, S. H.; Kim, K., Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine 2014, 9 (11), 1697-1713. 74. Wang, W.; Qin, S.; Zhao, L., Docetaxel enhances CD3+ CD56+ cytokine-induced killer cells-mediated killing through inducing tumor cells phenotype modulation. Biomedicine & Pharmacotherapy 2015, 69, 18-23. 75. Pan, X.; Wu, G.; Yang, W.; Barth, R. F.; Tjarks, W.; Lee, R. J., Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR. Bioconjugate Chemistry 2007, 18 (1), 101-108. 76. Chen, L.; Merzlyakov, M.; Cohen, T.; Shai, Y.; Hristova, K., Energetics of ErbB1 Transmembrane Domain Dimerization in Lipid Bilayers. Biophysical Journal 2009, 96 (11), 4622-4630. 77. Liao, H.-J.; Carpenter, G., Cetuximab/C225-Induced Intracellular Trafficking of Epidermal Growth Factor Receptor. Cancer Research 2009, 69 (15), 6179-6183. 78. Kutty, R. V.; Feng, S.-S., Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 2013, 34 (38), 10160-10171. 79. Andersson, J.; Rosenholm, J.; Areva, S.; Lindén, M., Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chemistry of Materials 2004, 16 (21), 4160-4167. 80. Meng, H.; Xue, M.; Xia, T.; Zhao, Y.-L.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E., Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society 2010, 132 (36), 12690-12697. 81. Muñoz, B.; Rámila, A.; Pérez-Pariente, J.; Díaz, I.; Vallet-Regí, M., MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials 2003, 15 (2), 500-503. 82. Chung, T.-H.; Wu, S.-H.; Yao, M.; Lu, C.-W.; Lin, Y.-S.; Hung, Y.; Mou, C.-Y.; Chen, Y.-C.; Huang, D.-M., The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28 (19), 2959-2966. 83. Barth, R. F.; Kaur, B., Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. Journal of neuro-oncology 2009, 94 (3), 299-312.
|