跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王順柏
研究生(外文):WANG,SHUN-BO
論文名稱:廢輪胎回收碳製備活性碳應用於亞甲基藍吸附之研究
論文名稱(外文):Activated carbons prepared from waste tire carbons for methylene blue removal
指導教授:林建宏林建宏引用關係
指導教授(外文):LIN,JARRN-HORNG
口試委員:林弘萍蒲盈志
口試委員(外文):LIN,HONG-PINGPU,YING-CHIH
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:廢輪胎熱裂解碳活性碳氣體活化法亞甲基藍吸附
外文關鍵詞:waste tirespyrolysis carbonsactivated carbonsgas activationmethylene blue adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近年來,交通工具所衍生的廢輪胎對我們的環境造成衝擊,如何將廢輪胎回收並轉變成有用的材料是學術界及業界所關心的議題。廢輪胎目前以熱裂解法回收熱裂解碳及油為較環保的作法,由於回收碳的比表面積僅60 m2/g且具有相當高的灰分含量(約10 wt%以上),其應用價值低落,而常見的作法是將回收碳經由氣體活化法或藥劑活化法來製備高比表面積的活性碳。本研究使用廢輪胎經由真空熱裂解回收的碳粉,利用CO2活化法製備活性碳,以達到回收再利用之目的。由於廢輪胎回收碳中所含的灰分會影響活性碳之性質,故本研究先將廢輪胎回收碳進行酸的前處裡以降低灰分含量,將其浸泡在80℃的1 M鹽酸進行迴流攪拌4小時,其有效降低灰分含量(14.04 wt%降至4.96 wt%)。接著放入水平式石英管狀高溫爐進行活化反應並探討反應參數條件,反應參數條件為溫度、 CO2流速及持溫時間。本研究結果顯示反應條件在溫度900℃、流速700 ml/min及持溫4小時下所製備的活性碳根據Brunauer-Emmett-Teller方法測定其比表面積可高達1060 m2/g,產率約為22.4%,且亞甲基藍吸附結果可達323 mg/g,其吸附動能遵循Pseudo second order model以及恆溫吸附模式遵循Langmuir isotherm model並探討亞甲基藍吸附機制。本研究方法有助於未來廢輪胎回收碳製備活性碳及廢水吸附應用。
Recently, waste tires derived from vehicles cause an impact on living environments. How to transform waste tires to useful materials is an important issue for academia and industry. A promising route is to recycle the waste tires through a pyrolysis method to obtain carbons, and oil. However, the as-obtained carbons show low specific surface area (< 60 m2/g) and higher ash content (normally, above 10wt%), these limit the applications for waste-tire carbons. The better way is to activate the as-obtained carbons by gas or chemical activation methods obtaining high specific surface area activated carbons. Here, we use as-obtained carbons derived by a vacuum pyrolysis method to prepare activated carbons by CO2 activation. Because ash content would lower activated carbons properties. Hence, The as-obtained carbons were treated by refluxing in 1 M HCl at 80℃for 4 h before CO2 activation. The result shows that ash content reduced from 14.04 to 4.96 wt%. The conditional parameters (flow rate, reaction time and temperature) of CO2 activation in a horizontal quartz furnace were investigated. We observe that the specific surface area of activated carbons could reach to 1060 m2/g according to the Brunauer-Emmett-Teller equations, and yield is approximately at 22.4 wt%. The adsorption of methylene blue for the waste tire activated carbons up to 323 mg/g. The adsorption kinetics follow pseudo second order model, and adsorption isotherm follow Langmuir isotherm model. A possible adsorption mechanism is proposed. Our study will provide useful information for preparing activated carbons from waste tires for waste water treatment.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 前言 1
一、廢輪胎介紹 1
二、活性碳及製備方法介紹 3
第二章 文獻回顧及探討 5
第一節 廢輪胎製備活性碳回顧 5
一、水氣活化法製備活性碳 5
二、CO2活化法製備活性碳 6
三、水氣活化法與CO2活化法比較 9
四、化學活化法 11
第二節 廢輪胎活性碳之應用 13
一、廢水處理 13
第三節 研究目的與動機 16
第三章 實驗方法 17
第一節 廢輪胎活性碳製備方法 17
一、實驗材料 17
二、反應系統 17
三、實驗步驟 18
四、儀器鑑定 19
第二節 亞甲基藍吸附實驗 20
一、實驗材料 20
二、實驗步驟 20
三、儀器鑑定 21
第四章 結果與討論 22
第一節 廢輪胎活性碳之孔洞性質 22
一、酸處理效果 22
二、時間效應 24
三、流速效應 27
四、溫度效應 29
五、結構形貌-TEM 32
六、表面分析-XPS 33
七、廢輪胎活性碳與其它文獻比較 35
第二節 亞甲基藍吸附探討 36
一、 吸附動能模式探討 36
二、吸附機制探討 38
三、恆溫吸附探討 41
四、孔洞對亞甲基藍吸附探討 44
第五章 結論 47
第六章 參考文獻 48


[1] A. Zabaniotou et al., “Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system,” Renewable and Sustainable Energy Reviews, 39, 1053-1073, 2014.
[2]行政院環保署統計資料庫, 環境環保署資源回收管理基金管理委員會.
[3] ETRMA, “End of life tyres A valuable resource with growing potential,” 2011.
[4] P. T. Williams, “Pyrolysis of waste tyres: A review,” Waste Management, 33, 1714-1728, 2013.
[5] A. A. Merchant et al, “Pyrolysis of scrap tires and conversion of chars to activated carbon,” Environmental and Energy Engineer, 39, 1370-1376, 1993.
[6] R. Helleur et al., “Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires,” Journal of Analytical and Applied Pyrolysis, 58-59, 813-824, 2001.
[7] E. M. Suuberg et al, “Porosity development in carbons derived from scrap automobile tires,” Carbon, 45, 1719-1726, 2007.
[8] M. Zhi et al, “Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires,” ACS Sustainable Chemistry & Engineering, 2, 1592-1598, 2014.
[9] H. Benaddi et al., “Surface functionality and porosity of activated carbons obtained
from chemical activation of wood,” Carbon, 38, 669-674, 2000.
[10] 陳永, 多孔材料製備與表徵, 中國科學技術科技大學出版社, 85-90, 2010.
[11] S. Ogasawara et al., “Preparation of activated carbon by thermal decomposition of used automotive tires,” Industrial & Engineering Chemistry Research, 26, 2556-2557, 1987.
[12] J. F. Gonzalez et al., “Preparation of activated carbons from used tyres by gasification with steam and carbon dioxide,” Applied Surface Science, 252, 5999-6004, 2006.
[13] P. Ariyadejwanich et al., “Preparation and characterization of mesoporous activated carbon from waste tires,” Carbon, 41, 157-164, 2003.
[14] K. Nakagawa et al., “Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes,” Water Research, 38, 1791-1798, 2004.
[15] A. Min et al., “Influence of carbon dioxide partial pressure and fluidization velocity on activated carbons prepared from scrap car tyre in a fluidized bed,” Chemical Engineering Science, 61, 8050-8059, 2006.
[16] E. L. K. Mui et al., “Mesoporous activated carbon from waste tyre rubber for dye removal from effluents,” Microporous and Mesoporous Materials, 130, 287-294, 2010.
[17] J. S. Kim et al., “Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char,” Fuel Processing Technology, 123, 57-64, 2014.
[18] T. Wigmans, “Industrial aspects of production and use of activated carbons,” Carbon, 27, 13-22. 1989.
[19] M. Molina-Sabio et al, “Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon,” Carbon, 34, 505-509, 1996.
[20] I. T. S. Garcia et al., “Active carbon preparation from treads of tire waste for dye removal in waste water,” Journal of The Brazilian Chemical Society, 22, 2027-2035, 2011.
[21] V. K. Gupta et al, “Pesticides removal from waste water by activated carbon prepared from waste rubber tire,” Water Research, 45, 4047-4055, 2011.
[22] G. Z. Kyzas., “Green adsorbents for wastewaters: A critical review,” Materials, 7, 333-364, 2014.
[23] C. Zhong et al., “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chemical Society Reviews, 44, 7484-7539, 2015.
[24] P. Zhao et al., “Application of activated carbons derived from scrap tires as electrode materials for supercapacitors,” ECS Journal of Solid State Science and Technology, 4, 35-40, 2015.
[25] A. Omri et al., “Preparation, modification and industrial application of activated carbon from almond shell,” Journal of Industrial and Engineering Chemistry, 19, 2092-2099, 2013.
[26] K. S. W. Sing et al., “Reporting physisorpton data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure and Applied Chemistry, 57, 603-619, 1984.
[27] Ting Yang et al., “Characteristics of activated carbons prepared from pistachio-nut shells by physical activation,” Journal of Colloid and Interface Science, 267, 408-417, 2003.
[28] S. Biniak et al., “The characterization of activated carbons with oxygen and nitrogen surface groups,” Carbon, 35, 1799-1810, 1997.
[29] A. Quek et al., “Preparation and characterization of low energy post-pyrolysis oxygenated tire char,” Chemical Engineering Journal, 170, 194-201, 2011.
[30] B. Acevedo et al., “Texture and surface chemistry of activated carbons obtained from tyre wastes,” Fuel Processing Technology, 134, 275-283, 2015.
[31] M.T. Gonzalez et al., “CO2 activation of olive stones carbonized under different experimental conditions,” Carbon, 35, 159-165, 1997.
[32] M. Betancur et al., “Production of activated carbon by waste tire thermochemical degradation with CO2,” Journal of Hazardous Materials, 168, 882-887, 2009.
[33] Y.S. Ho et al., “The sorption of lead(II) ions on peat,” Waster Reasearch, 33, 578-584, 1999.
[34] Y.S. Ho et al., “Pseudo-second order model for sorption processes,” Process Biochemistry, 34, 451-465, 1999.
[35] B. H. Hameed et al., “Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies,” Journal of Hazardous Materials, 141, 819-825, 2007.
[36] C. A. Páez et al., “Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue,” Adsorption, 18, 199-211, 2012.
[37] A. E. Ofomaja., “Kinetic study and sorption mechanism of methylene blue and methylviolet onto mansonia (Mansonia altissima) wood sawdust,” Chemical Engineering Journal, 143, 85-95, 2008.
[38] K. A. G. Gusmaoa et al., “Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions - Kinetic and equilibrium studies,” Dyes and Pigments, 92, 967-974, 2012.
[39] P. M. K. Reddy et al., “Preparation of activated carbons from bio-waste: effect of surface functional groups on methylene blue adsorption,” International Journal of Environmental Science and Technology, 12, 1363-1372, 2012.
[40] T. W. Weber et al., “Pore and solid diffusion models for fixed-bed adsorbers,” AlChE Journal, 20, 228-238, 1974.
[41] S. Yorgun et al., “Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4,” Journal of the Taiwan Institute of Chemical Engineers, 53, 122-131, 2015.
[42] Md. A. Islam et al., “Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation,” Chemical Engineering Journal, 270, 187-195, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top