(3.235.191.87) 您好!臺灣時間:2021/05/13 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周詠翔
研究生(外文):Zhou, Yong-Xiang
論文名稱:層狀 P2 型 Na2/3[Fe1/3Mn2/3]O2 正極材料製備暨電化學分析
論文名稱(外文):Electrochemical properties of P2-type Na2/3[Fe1/3Mn2/3]O2 layered cathode material in sodium ion batteries
指導教授:莊陽德莊陽德引用關係
指導教授(外文):Juang, Yung-Der
口試委員:莊陽德林建宏胡龍豪
口試委員(外文):Juang, Yung-DerLin, Jarrn-HorngHu, Lung-Hao
口試日期:2016-08-29
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:鈉離子電池錳基型正極材料全電池
外文關鍵詞:P2-typesodium-ion batterieslayered cathode materialfull-cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 鈉正極材料發展及未來展望 2
1-3 研究動機與目的 6
第二章 文獻回顧 7
2-1 儲能裝置及其發展 7
2-2 鹼金屬離子電池工作原理 7
2-3 層狀正極材料 9
2-3-1 層狀材料結構定義 9
2-3-2 鐵/ 錳基型層狀正極材料 10
2-3-3 其他過渡金屬基型層狀正極材料 12
2-3-4 二元金屬複合氧化物層狀正極材料 14
2-4 層狀正極材料製備方法 21
2-4-1 固態反應法 21
2-4-2 共沉澱法 22
2-4-3 溶膠凝膠法 22
2-4-4 噴霧法 22
第三章 實驗方法 23
3-1 實驗架構 23
3-1-1 錳基型層狀正極材料製備 23
3-1-2 半電池暨全電池製備 23
3-2 實驗材料 24
3-3 實驗設備 25
3-3-1 滾軸式球磨機 (MUBM-340-RTD) 25
3-3-2 高溫燒結爐 (DENG YNG, DF40) 25
3-3-3 行星式球磨機 (Gold Max, G-Mixer 400S ) 26
3-3-4 極片塗佈機 (浩聚實業有限公司,LE-CT75) 26
3-3-5 極片滾壓機 (T·VERTER, N2-2P5-H) 26
3-3-6 厭氧操作箱 (MBRAUN, Unilab-B) 26
3-3-7 電化學測試平台 (佳優科技股份有限公司,BAT-750B) 27
3-3-8 Metrohm Autolab (PGSTAT30) 27
3-4 實驗步驟 28
3-4-1 錳基型鈉正極材料製備暨分析 29
3-4-2 半電池製備暨電化學測試 30
3-4-3 18650 圓筒型全電池製備暨電化學測試 32
3-5 特性分析暨電化學分析 33
3-5-1 X 射線繞射分析儀 (X-Ray diffraction, XRD) 33
3-5-2 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 34
3-5-3 拉曼光譜分析儀 (Raman spectroscopy, Raman) 35
3-5-4 交流阻抗分析法 (Electrical Impedance Spectroscopy, EIS) 36
第四章 結果與討論 37
4-1 X 射線繞射圖分析 37
4-2 掃描式電子顯微鏡圖像分析 38
4-3 拉曼光譜圖分析 39
4-4 電化學測試 – CR 2032 鈕扣型半電池 41
4-4-1 不同結構相之循環壽命暨交流阻抗分析 41
4-4-3 P2-NFMO 於不同電壓區間充放電之電化學行為 43
4-4-4 P2-NFMO 於不同充放電速率下之電化學行為 46
4-5 電化學測試 – 18650 圓筒型全電池 47
4-5-1 HC/ P2-NFMO 全電池充放電曲線 48
4-5-2 HC/ P2-NFMO 全電池循環壽命 49
4-5-3 HC/ P2-NFMO 於不同充放電速率下之電化學行為 50
第五章 結論與未來展望 51
5-1 結論 51
5-2 未來展望 52
參考文獻 53

表目錄
表 1-1. 鋰/ 鈉金屬基本資訊 4
表 3-1. 實驗材料簡表 24
表 4-1. 不同結構之 NFMO 晶格常數資訊 38
表 4-2. 正極/ 負極極材之漿料組成 (%) 47


圖目錄
圖 1-1. 歷年鈉正極層狀材料發表文章數 (擷自 Web of Science, 1990~2016) 3
圖 1-2. 地殼中各金屬元素含量比例圖 3
圖 1-3. 元素週期表 4
圖 2-1. 層狀結構示意圖 9
圖 2-2. Na||α-NaFeO2 之充放電曲線圖 (電壓範圍:1.5-3.6V;電解液:1 M NaClO4 in EC:DMC (1:1),充放電流:0.2 mA/cm) 10
圖 2-3. (a) Na||Na0.6MnO2 半電池充放電曲線圖 (電壓範圍:2.0-3.8 V,電解液:1 M NaClO4 in PC,充放電流:0.1 mA/cm) (b) Na||Na0.6MnO2 半電池循環伏安圖譜 (c) Na||Na0.6MnO2 半電池於特定電壓範圍之電容量衰退圖 (■:2.0-3.8 V;●:2.0-3.0 V)[16] 11
圖 2-4. NaCrO2 粉末 X 射線繞射圖暨結構精算 12
圖 2-5. (a) Li||LiCrO2 (b) Na||NaCrO2 使用 1 M (a) LiClO4 (b) NaClO4 電解液之充放
電曲線 (充放電壓:(a) 3.0-4.5V (20 mA/g) (b) 2.0-3.6V (25mA/g) 12
圖 2-6. Na0.71CoO2 電化學測試 (a) 充放電曲線 (電壓範圍:2.0-3.5 V;充放電速率:0.08 C;電解液:1 M NaClO4 in PC (b) 循環壽命暨庫倫效率 (充放電速率:0.08 C) 13
圖 2-7. Na||NaNiO2 不同電壓範圍之充放電曲線圖 (電壓範圍:(a) 1.25-3.75 V (b) 2.0-4.5 V;充放電速率:0.1 C;電解液:1 M NaPF6 in EC:DMC (1:1 wt%)) 14
圖 2-8. (a) Na2/3[Fe1/2Mn1/2]O2 (b) Na[Fe1/2Mn1/2]O2 之 SXRD 圖譜及形貌與 P2、O3 結構示意圖 15
圖 2-9. (a) Na2/3[Fe1/2Mn1/2]O2 (b) Na[Fe1/2Mn1/2]O2 之充放電曲線圖 (電壓範圍:1.5-4.3 V;電解液:1M NaClO4 in PC with FEC;充放電速率:13 mAh/g) (c) 兩結構相之循環壽命 (d) Na2/3[Fe1/2Mn1/2]O2 於不同放電速率下之表現 15
圖 2-10. (a) P2-Na0.67Mn2/3Fe1/3O2, (b) P2-Na0.71Mn1/2Fe1/2O2, (c) O3-Na0.82Mn1/3Fe2/3O2, (d) (O3+O’3)-Na0.8Mn1/2Fe1/2O2 之X射線繞射分析暨模擬圖 16
圖 2-11. 不同 Fe/ Mn 比之層狀材料半電池之循環壽命圖 (充放電壓範圍:1.5-3.8 V;電解液:1 M NaPF6 in PC;充放電速率:0.01 C) 16
圖 2-12. (a) P2- Na2/3CoO2, (b) Na2/3Mn1/2Co1/2O2 , (c) Na2/3MnO2 之充放電曲線圖。(d)P2-Na2/3MnxCo1-xO2 之循環壽命比較圖 (電壓範圍:1.5-4.0 V;電解液:1 M NaClO4 in PC;充放電速率:30mA/g) 17
圖 2-13. NaNi0.5Mn0.5O2 X 射線粉末繞射圖及掃描式電子顯微鏡形貌圖 18
圖 2-14. Na||NaNi0.5Mn0.5O2 with 1M NaClO4 in PC 之充放電曲線圖 (充放電壓區間:2.2-3.8 V,充放電流:4.8 mA/g) 18
圖 2-15. Na1-x Ni0.5Mn0.5O2 結構相變化示意圖 (第一圈充電) 19
圖 2-16. P2-Na2/3Ni1/3Mn2/3O2 於不同電壓範圍 (a) 2.0-4.5 V (b) 2.0-4.0 V (c) 1.6-3.8 V 之充放電曲線圖 (充放電速率:0.1 C (17mA/g);電解液:1 M NaClO4 in PC/FEC (95:5 v/v)) 19
圖 2-17. 機械研磨運動方式 (a) 落下運動 (b) 雪崩運動 21
圖 3-1. 實驗簡易流程圖 23
圖 3-2. 滾軸式球磨機 25
圖 3-3. (a) 高溫燒結爐 (b) 行星式球磨機 25
圖 3-4. (a) 極片塗佈機 (b) 極片滾壓機 26
圖 3-5. 厭氧操作箱 27
圖 3-6. (a) 電化學測試平台 (b) Autolab 27
圖 3-7. 實驗流程圖 28
圖 3-8. 鈉鐵錳氧化物 (NFMO) 製備流程圖 29
圖 3-9. CR 2032 鈕扣型半電池組裝示意圖 31
圖 3-10. CR 2032 鈕扣型半電池製備流程圖 31
圖 3-11. 18650 圓筒型全電池製備流程圖 32
圖 3-12. (a) X 射線繞射分析儀簡易設計圖 (b) 布拉格方程式繞射示意圖 33
圖 3-13. 掃描式電子顯微鏡成像示意圖 34
圖 3-14. 拉曼散射模式 35
圖 4-1. P2-Na2/3Fe1/3Mn2/3O2 之 X 射線繞射圖 37
圖 4-2. 不同燒結條件之NFMO 表面形貌 (a) 800°C,12 小時 (b) 850°C, 38
12 小時 (c) 900°C,12 小時 (d) 900°C,15 小時 38
圖 4-3. 原始粉料與原料之拉曼散射光譜圖 39
圖 4-4. 原始粉料與不同燒結條件之 NFMO 拉曼散射光譜圖 39
圖 4-5. 不同燒結條件之 NFMO 拉曼散射光譜擬合圖 (400-800 cm-1) 40
圖 4-6. 不同結構相之 NFMO 鈕扣型半電池循環壽命 (電解液:1 M NaPF6 in EC:DEC (1:1 wt%);電壓區間:1.8-4.3 V;充放電速率:30 mA/g (0.2 C)) 42
圖 4-7. 不同結構相之 NFMO 鈕扣型半電池五圈充放電後之交流阻抗分析 (電解液:1 M NaPF6 in EC:DEC (1:1 wt%);掃瞄範圍:1000000~0.01 Hz;振幅:0.01 V) 42
圖 4-8. P2-NFMO 結構相轉變示意圖 43
圖 4-9. P2-NFMO 鈕扣型半電池充放電測試 (a) 1.8-4.3 V, (b) 1.8-4.0 V, (c) 2.0-4.0 V, (d) 不同電壓區間之循環壽命 (電解液:1 M NaPF6 in EC:DEC (1:1 wt%);充放電速率:15 mA/g (0.1 C)) 45
圖 4-10. P2-NFMO 於不同放電速率之充放電循環測試圖 (電壓區間:1.8-4.3 V;電解液:1 M NaPF6 in EC:DEC (1:1 wt%);充放電速率:15 mA/g (0.1 C)) 46
圖 4-11. HC/ P2-NFMO 18650 圓筒型全電池充放電曲線 (電壓區間:2.0-3.8 V;電解液:1 M NaPF6 in EC:DEC (1:1 wt%);充放電速率:14 mA (0.2 C)) 48
圖 4-12. HC/ P2-NFMO 18650 圓筒型全電池於不同電壓區之循環壽命表現 (電壓區間:2.0-3.8 V 及 2.0-4.5 V;電解液:1 M NaPF6 in EC:DEC (1:1 wt%);充放電速率:70 mA (1 C)) 49
圖 4-13. HC/ P2-NFMO 18650 圓筒型全電池於不同放電速率之測試 (電壓範圍:2.0-3.8 V;電解液:1 M NaPF6 in EC:DEC (1:1 wt%)) 50

[1]N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chemical Review, vol. 114, pp. 11636-11682, 2014.
[2]L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, et al., "A superior low-cost cathode for a Na-ion battery," Angewandte Chemie International Edition, vol. 52, pp. 1964-1967, 2013.
[3]H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, pp. 2338-2360, 2013.
[4]陳德怡,未來儲能應用 - 鋁離子電池潛力無窮,Industrial Technology,第 26-27 頁,2015。
[5]黃郁青,新世代儲能材料的現況與發展,能源簡析,第 1-4 頁,2015。
[6]A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, and M. R. Palacín, "In search of an optimized electrolyte for Na-ion batteries," Energy & Environmental Science, vol. 5, pp. 8572-8583, 2012.
[7]M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, "A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries," Energy & Environmental Science, vol. 8, pp. 81-102, 2015.
[8]M. C. Blangero, D.; Pollet, M.; Darriet, J.; Delmas, C.; and J.-P. P. Doumerc, "High temperature phase transition in the three-layered sodium cobaltite P`3-NaxCoO2 (x = 0.62)," physical Review B: Condensed Matter and Material Physics, vol. 77, pp. 184116-184145, 2008.
[9]L. W. Shacklette, T. R. Jow, and L. Townsend, "Rechargeable Electrodes from Sodium Cobalt Bronzes," Journal of The Electrochemical Society, vol. 135, pp. 2669-2674, 1988.
[10]J. Molenda, C. Delmas, P. Dordor, and A. Stokłosa, "Transport properties of NaxCoO2−y," Solid State Ionics, vol. 12, pp. 473-477, 1984.
[11]J. Zhao, L. Zhao, N. Dimov, S. Okada, and T. Nishida, "Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries," Journal of the Electrochemical Society, vol. 160, pp. A3077-A3081, 2013.
[12]S. Komaba, C. Takei, T. Nakayama, A. Ogata, and N. Yabuuchi, "Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2," Electrochemistry Communications, vol. 12, pp. 355-358, 2010.
[13]P. Vassilaras, X. Ma, X. Li, and G. Ceder, "Electrochemical Properties of Monoclinic NaNiO2," Journal of the Electrochemical Society, vol. 160, pp. A207-A211, 2012.
[14]M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaim, and C. Delmas, "P2-NaxVO2 system as electrodes for batteries and electron-correlated materials," Nature Materials, vol. 12, pp. 74-80, 2013.
[15]H. Yu, S. Guo, Y. Zhu, M. Ishida, and H. Zhou, "Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries," Chemical Communications, vol. 50, pp. 457-459, 2014.
[16]A. Caballero, L. Hernán, J. Morales, L. Sánchez, J. Santos Peña, and M. A. G. Aranda, "Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells," Journal of Materials Chemistry, vol. 12, pp. 1142-1147, 2002.
[17]Y. Hou, H. Tang, B. Li, K. Chang, Z. Chang, X.-Z. Yuan, et al., "Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors," Materials Chemistry and Physics, vol. 171, pp. 137-144, 2016.
[18]C. Delmas, C. Fouassier, and P. Hagenmuller, "Structural classification and properties of the layered oxides," Physica B+C, vol. 99, pp. 81-85, 1980.
[19]D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, and C. S. Johnson, "Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application," Electrochemistry Communications, vol. 18, pp. 66-69, 2012.
[20]N. Van Nghia, P.-W. Ou, and I. M. Hung, "Synthesis and Electrochemical Properties of Sodium Manganese-based Oxide Cathode Material for Sodium-ion Batteries," Electrochimica Acta, vol. 161, pp. 63-71, 2015.
[21]R. J. Clément, P. G. Bruce, and C. P. Grey, "Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials," Journal of The Electrochemical Society, vol. 162, pp. A2589-A2604, 2015.
[22]I. Hasa, D. Buchholz, S. Passerini, and J. Hassoun, "A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 5206-5212, 2015.
[23]X. Chen, X. Zhou, M. Hu, J. Liang, D. Wu, J. Wei, et al., "Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 20708-20714, 2015.
[24]H. Wang, B. Yang, X.-Z. Liao, J. Xu, D. Yang, Y.-S. He, et al., "Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges," Electrochimica Acta, vol. 113, pp. 200-204, 2013.
[25]S. Komaba, T. Nakayama, A. Ogata, T. Shimizu, C. Takei, S. Takada, et al., "Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2," ECS Transactions, vol.16, pp. 43-55, 2009.
[26]R. Fielden and M. N. Obrovac, "Investigation of the NaNixMn1-xO2 (0 ≤ x ≤ 1) System for Na-Ion Battery Cathode Materials," Journal of the Electrochemical Society, vol. 162, pp. A453-A459, 2015.
[27]E. Talaie, V. Duffort, H. L. Smith, B. Fultz, and L. F. Nazar, "Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability," Energy & Environmental Science, vol. 8, pp. 2512-2523, 2015.
[28]J. Zhao, J. Xu, D. H. Lee, N. Dimov, Y. S. Meng, and S. Okada, "Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries," Journal of Power Sources, vol. 264, pp. 235-239, 2014.
[29]M. Sendova-Vassileva, R. Stoyanova, D. Carlier, M. Yoncheva, E. Zhecheva, and C. Delmas, "Raman Spectroscopy Study on Na2/3Mn1-xFexO2 Oxides," Advances in Science and Technology, vol. 74, pp. 60-65, 2010.
[30]G. Singh, B. Acebedo, M. C. Cabanas, D. Shanmukaraj, M. Armand, and T. Rojo, "An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2," Electrochemistry Communications, vol. 37, pp. 61-63, 2013.
[31]Y. Bai, L. Zhao, C. Wu, H. Li, Y. Li, and F. Wu, "Enhanced Sodium Ion Storage Behavior of P2-Type Na2/3Fe1/2Mn1/2O2 Synthesized via a Chelating Agent Assisted Route," ACS Applied Materials & Interfaces, vol. 8, pp. 2857-65, 2016.
[32]N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, et al., "P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries," Nature Materials, vol. 11, pp. 512-7, 2012.
[33]B. Mortemard de Boisse, D. Carlier, M. Guignard, and C. Delmas, "Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries," Journal of the Electrochemical Society, vol. 160, pp. A569-A574, 2013.
[34]T. KODERA and T. OGIHARA, "Synthesis and electrochemical properties of Na2/3Fe1/3Mn2/3O2 cathode materials for sodium ion battery by spray pyrolysis," Journal of the Ceramic Society of Japan, vol. 122, pp. 483-487, 2014.
[35]D. Buchholz, A. Moretti, R. Kloepsch, S. Nowak, V. Siozios, M. Winter, et al., "Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material," Chemistry of Materials, vol. 25, pp. 142-148, 2013.
[36]D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, et al., "Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 1, pp. 3895-3899, 2013.
[37]J. Zheng, P. Yan, W. H. Kan, C. Wang, and A. Manthiram, "A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries," Journal of The Electrochemical Society, vol. 163, pp. A584-A591, 2016.
[38]Y. Liu, Y. Zhou, S. Zhang, J. Zhang, P. Ren, and C. Qian, "Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries," Journal of Solid State Electrochemistry, vol. 20, pp. 479-487, 2015.
[39]Y. Zhong, Z. Wu, Y. Tang, W. Xiang, X. Guo, and B. Zhong, "Micro-nano structure Na2MnPO4F/C as cathode material with excellent sodium storage properties," Materials Letters, vol. 145, pp. 269-272, 2015.
[40]Z. Li, D. Young, K. Xiang, W. C. Carter, and Y.-M. Chiang, "Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System," Advanced Energy Materials, vol. 3, pp. 290-294, 2013.
[41]K. Park, D. Han, J. Shon, S. G. Doo, and S. Lee, "Characterization of a thin, uniform coating on P2 type Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries," RSC Advances, vol. 5, pp. 6340-6344, 2015.
[42]Y. Moritomo, K. Goto, and T. Shibata, "Glucose-Treated Manganese Hexacyanoferrate for Sodium-Ion Secondary Battery," Energies, vol. 8, pp. 9486-9494, 2015.
[43]X. Rui, W. Sun, C. Wu, Y. Yu, and Q. Yan, "An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network," Advanced Materials, vol. 27, pp. 6670-6676, 2015.
[44]J.-J. Ding, Y.-N. Zhou, Q. Sun, and Z.-W. Fu, "Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries," Electrochemistry Communications, vol. 22, pp. 85-88, 2012.
[45]C.-Y. Yu, J.-S. Park, H.-G. Jung, K.-Y. Chung, D. Aurbach, Y.-K. Sun, et al., "NaCrO2 cathode for high-rate sodium-ion batteries," Energy & Environmental Science, vol. 8, pp. 2019-2026, 2015.
[46]J. Hou, J. Song, Y. Niu, C. Cheng, H. He, Y. Li, et al., "Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries," Journal of Solid State Electrochemistry, vol. 19, pp. 1827-1831, 2015.
[47]莊麗梅,綠色產品有害物質管理規定,友達光電股份有限公司,第 3 頁,2014。
[48]金翼、孫信、余彥、丁楚雄、陳春華及官亦標,鈉離子儲能電池關鍵材料,化學進展,第 26 卷第 4 期,第 582-591 頁,2014。
[49]H.-X. Yang and J.-F. Qian, "Recent Development of Aqueous Sodium Ion Batteries and Their Key Materials," Journal of Inorganic Materials, vol. 28, pp. 1165-1171, 2013.
[50]http://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=1146。
[51]劉玉章、曾育貞、呂永方、沈錦昌及鍾人傑,電網級儲能技術研發現況與進展,台灣能源期刊,第 2 卷第 2 期,第 169-190 頁,2015。
[52]H. Li, C. Wu, F. Wu, and Y. Bai, "Sodium Ion Battery: A Promising Energy-storage Candidate for Supporting Renewable Electricity," Acta Chimica Sinica, vol. 72, pp. 21-29, 2014.
[53]R. Stoyanova, D. Carlier, M. Sendova-Vassileva, M. Yoncheva, E. Zhecheva, D. Nihtianova, et al., "Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2," Journal of Solid State Chemistry, vol. 183, pp. 1372-1379, 2010.
[54]A. Mendiboure, C. Delmas, and P. Hagenmuller, "Electrochemical intercalation and deintercalation of NaxMnO2 bronzes," Journal of Solid State Chemistry, vol. 57, pp. 323-331, 1985.
[55]K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, and S. Komaba, "Layered oxides as positive electrode materials for Na-ion batteries," MRS Bulletin, vol. 39, pp. 416-422, 2014.
[56]A. K. Rai, L. T. Anh, J. Gim, V. Mathew, and J. Kim, "Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries," Ceramics International, vol. 40, pp. 2411-2417, 2014.
[57]X. Wang, M. Tamaru, M. Okubo, and A. Yamada, "Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries," The Journal of Physical Chemistry C, vol. 117, pp. 15545-15551, 2013.
[58]余宣賦及程冠博,磁性陶瓷粉末,科學發展,第 408 期,第 20-23 頁,2006。
[59]莊允中,奈米表面技術發展趨勢,經濟部技術處產業技術知識服務計畫,第 1-16 頁,2003。
[60]陳長麟,鉬酸鹽基紅色螢光粉發光特性之改善,國立臺南大學材料科學系研究所碩士論文,第 23-26 頁,2013。
[61]李垚、唐東雁及趙九蓬,新型功能材料製備工藝,化學工業出版社,第 12-15 頁,2011。
[62]許春香及張金山,材料製備新技術,化學工業出版社,第 150-152 頁,2010。
[63]呂英治及洪敏雄,奈米材料及製程介紹,科儀新知,第 22 卷第 6 期,第 49-53 頁,2001。
[64]林哲暐,硼系電解液添加劑及水系黏著劑應用於磷酸亞鐵鋰電池,國立臺南大學綠色能源科技研究所碩士論文,第 17-21 頁,2015。
[65]http://www.nutn.edu.tw/lithium/18650_1.html。
[66]谷亦杰及宮聲凱,材料分析檢測技術,中南大學出版社,第 36-68 頁,2009。
[67]汪建民,材料分析,英杰企業有限公司,第 121-147 頁,1998。
[68]羅聖全,掃描式電子顯微鏡,科學研習,第 52 卷第 5 期,第 2-4 頁。
[69]朱永法、宗瑞隆及姚文清,材料分析化學,化學工業出版社,第 378-384 頁,2009。
[70]維基百科:拉曼光譜學。
[71]杜希文及源續波,材料分析方法,天津大學出版社,第 203-212 頁,2006。
[72]W. K. Pang, S. Kalluri, V. K. Peterson, N. Sharma, J. Kimpton, B. Johannessen, et al., "Interplay between Electrochemistry and Phase Evolution of the P2-type Nax(Fe1/2Mn1/2)O2 Cathode for Use in Sodium-Ion Batteries," Chemistry of Materials, vol. 27, pp. 3150-3158, 2015.
[73]S. M. Oh, S. T. Myung, M. W. Jang, B. Scrosati, J. Hassoun, and Y. K. Sun, "An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode," Physical Chemistry Chemical Physics, vol. 15, pp. 3827-3833, 2013.
[74]https://iupac.org/what-we-do/periodic-table-of-elements/。

電子全文 電子全文(網際網路公開日期:20210901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔