(3.239.56.184) 您好!臺灣時間:2021/05/13 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李季航
研究生(外文):LEE, CHI-HANG
論文名稱:電噴塗法與蒸氣輔助溶液製程製備鈣鈦礦太陽能電池
論文名稱(外文):Fabrication of Perovskite Solar Cells by Electrospray and Vapor-Assisted Solution Process
指導教授:莊陽德莊陽德引用關係傅耀賢傅耀賢引用關係
指導教授(外文):JUANG, YUN-DERFU, YW-SHYAN
口試委員:郭宗枋戴學斌
口試委員(外文):GUO, TZUNG-FANGDAI, SHYUE-BIN
口試日期:2016-08-25
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:53
中文關鍵詞:電噴塗法蒸氣輔助溶液製程鈣鈦礦太陽能電池
外文關鍵詞:electrosprayvapor assisted solution processperovskite solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
摘要
Abstract
致謝
目錄
表目錄
圖目錄
第一章緒論
1-1研究背景
1-2太陽能電池介紹
1-3 有機鈣鈦礦太陽能電池發展背景
1-4研究動機
第二章文獻回顧
2-1 鈣鈦礦材料介紹
2-2電噴塗法(Electrospray)介紹
2-3鈣鈦礦太陽能電池文獻回顧
2-3-1鈣鈦礦太陽能電池結構
2-3-2不同製程製備鈣鈦礦吸光層
第三章實驗部分
3-1實驗儀器與裝置
3-2實驗藥品
3-3分析方法與儀器
3-3-1X-ray繞射儀(X-Ray Diffraction)
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscope)
3-4實驗設計與流程
3-5實驗步驟
3-5-1 CH3NH3I合成
3-5-2氧化銦錫玻璃基板的準備
3-5-3元件基板準備
3-5-4電洞傳輸層(Hole Transporting Layer)
3-5-5鈣鈦礦吸光層製備
3-5-6電子傳輸層(Electron Transport Layer)與電極蒸鍍
第四章結果與討論
4-1 CH3NH3I製備
4-2以電噴塗法製備PbI2前驅薄膜
4-2-1 PbI2溶液濃度對薄膜之影響
4-2-2 電壓因素對PbI2薄膜之影響
4-2-3流速因素對PbI2薄膜之影響
4-3 以蒸氣輔助溶液製程製備CH3NH3PbI3薄膜
4-3-1 CH3NH3I當量數對昇華量之影響
4-3-2 熱處理時間對CH3NH3PbI3薄膜之影響
4-3-3 CH3NH3PbI3薄膜元件效率
第五章結論與未來展望
第六章参考文獻



[1] C. E. Fritts, On a new form of selenium photocell, Am. J. Sci., 26, 465.
[2] J. Zhao, A. Wang and M. A. Green, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett., 1998, 73, 1991-1993.
[3] N. Jain and M. K. Hudait, Design of metamorphic dual-junction InGaP/GaAs solar cell on Si with efficiency greater than 29% using finite element analysis, 38th IEEE Photovoltaic Spec. Conf., 2012, 2056-2060.
[4] Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 2004, 248, 1381-1389.
[5] S. R. Jang, M. J. Choi, R. V., and K. J. Kim, Anchorage of N3 dye-linked polyacrylic acid to TiO2/electrolyte interface for improvement in the performance of dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 2007,91,1209-1214.
[6] F. Aiga and T. Tada, Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cell, J. Mol. Struct., 2003, 658, 25-32.
[7] A. Fukui, N. Murofushi, N. Koide, R. Yamanaka and H. Katayama, Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module, Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011:2C-50-08.
[8] National Renewable Energy Laboratory (NREL), http://www.nrel.gov/
[9] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 2009, 131, 6050-6051.
[10] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 2011, 3, 4088-4093.
[11] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2012, 2, 591.
[12] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 2012, 338, 643-647.
[13] M. Liu, M. B. Johnston and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 2013, 501, 395-398.
[14] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 2014, 345, 542-546.
[15] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 2013, 13, 1764-1769.
[16] S. Luo and W. A. Daoud, Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design, J. Mater. Chem. A, 2014, 3, 8992-9010.
[17] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 2014, 26, 1584-1589.
[18] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 2013, 342, 341-344.
[19] G. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. A, 1964, 280, 383-397.
[20] 吳晶,郭玉高,包建民,電噴霧技術在納米材料製備中的應用,材料導報,2005,19,8-11。
[21] 陳玥縈,電噴塗法製備鈣鈦礦吸光層太陽能電池,碩士論文,國立臺南大學綠色能源科技學系,台南市,2015。
[22] H. -H. Kim, J. –H. Kim and A. Ogata, Time-resolved high-speed camera observation of electrospray, J. Aerosol Sci., 2011, 42, 249-263.
[23] W. Balachandran, P. Miao and P. Xiao, Electrospray of fine droplets of ceramic suspensions for thin-film preparation, J. Electrostat., 2001, 50, 249-263.
[24] T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale and Y. M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A, 2015, 3, 8943-8969.
[25] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, CH3NH3PbI3 Perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 2013, 25, 3727-3732.
[26] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013, 499, 316–319.
[27] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution Process, J. Am. Chem. Soc., 2014, 136, 622– 625.
[28] P. Gao, M. Gratzel and M. K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci., 2014, 7, 2448-2463.
[29] Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, and I. D. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing, J. Phys. Chem. Lett., 2015, 6, 493–499.
[30] G. Niu, X. Guo and L. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A, 2015, 3, 8970-8980.

電子全文 電子全文(網際網路公開日期:20210825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔