跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施柏衍
研究生(外文):SHIH,BO-YEN
論文名稱:最佳化增強型地熱系統之超臨界二氧化碳取熱之操作平台
論文名稱(外文):An Operating Platform of EGS for the Heat Extraction by Supercritical CO2 based on Optimization Method
指導教授:林大偉林大偉引用關係
指導教授(外文):David T.W. Lin
口試委員:謝瑞青胡毓忠
口試委員(外文):Jui-Ching HsiehYuh-Chung Hu
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:增強型地熱系統超臨界二氧化碳
外文關鍵詞:EGSsupercritical CO2BrinkmanNelder-Mead
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是為獲得超臨界二氧化碳於增強型地熱系統儲集層中取熱之最佳操作條件。針對溫度200℃儲集層中平均粒徑大小1.54mm和2.03mm,以各種入口質量流率0.00027到0.00109 kg/s與壓力7.5到12.5MPa,進行取熱模擬和分析。研究中耦合Brinkman孔隙流模型和熱傳模組建立增強型地熱系統儲集層以評估熱行為,其中數值模型係經由實驗去驗證。
最佳化之過程乃透過Nelder-Mead方法提出了不同粒徑大小之最佳操作條件。除了找到最佳操作條件外,同時也可觀察到不同操作條件之熱傳係數、取熱和比取熱。結果表明最佳取熱皆發生在壓力9.0MPa和質量流率0.00109 kg/s時,更證實超臨界二氧化碳深層地熱系統存在取熱之最佳操作條件。這項研究將建立地熱發電廠熱源之最佳平台以提供最佳取熱參數,更可以降低增強型地熱系統之實際操作成本。

The purpose of this study is to obtain the optimal operating condition in order to find the maximum supercritical CO2 heat extraction in the enhanced geothermal system (EGS). Focus on the average particle size 1.54mm and 2.03mm in the reservoir of temperature 200℃ that using various inlet mass flow rate 0.00027 to 0.00108kg/s and pressure 7.5 to 12.5MPa to simulate and analyze for heat extraction. In this study, the heat transfer model conjugated with the Brinkman model is used to evaluate the thermal behavior in the reservoir of EGS. This numerical model is validated by experiment.
Optimization is processed based on the Nelder-Mead approach. The optimal operating conditions are proposed with different particle size. In addition to find optimal operation, we observed that the heat transfer coefficients, heat extraction and specific heat extraction in various operation. The results show that the maximum heat extraction occurred when the pressure at 9.0MPa and mass flow rate at 0.00109kg/s, and confirmed CO2-EGS exists the optimal operating conditions of heat extraction. This study will build the optimal platform of heat source of geothermal power plant to provide the optimal heat-extracted parameters, and reduce the cost of actual practice of EGS.

中文摘要………………………….………………………………………………....……...…i
英文摘要………………………………...………………………………….………….……ii
致謝……………….………………………………………………………………...…iii
目次………………………….……………………………………...……....……….……iv
表次………………………….………………………………………………………….vi
圖次…………………………….………………………………………..……...………vii
符號索引…………………………….………………………………………..……...………ix
第一章 緒論…………………………………………………………………………………...1
第一節 研究背景與動機……….…………...….…….……………..…………………1
第二節 地熱系統簡介………………………..………………………..………………3
第三節 文獻回顧…………………………………..……………………..……………5
第四節 研究目的…………………..……………………………………..……………10
第五節 論文大綱…………………..…………………………………………..………11
第二章 理論分析與模型建立……………………………………………………………….17
第一節 統御方程式………………………………………………………..…………17
第二節 有限元素法…………………………………………………………..………19
第三節 模型建立……………………………………………....…………………..…20
第四節 程式驗證與網格分析………………………………....…………………..…22
第三章 研究方法…………………………………………………………………………….44
第一節 研究步驟…………………………………………………………..…………44
第二節 熱擴散係數…………………………………………………………..………45
第三節 最佳化………………………………………………....…………………..…47
第四章 結果與討論………………………………………………………………………….72
第一節 取熱量……………………………………………………………..…………72
第二節 熱傳係數……………………………………………………………..………74
第三節 比取熱量……………………………………………....…………………..…75
第四節 實驗與模擬之最佳化取熱量比較…………………....…………………..…76
第五節 最佳化之平台介面…………………………………....…………………..…77
第五章 結論與展望………………………………………………………………………….94
第六章 參考文獻…………………………………………………………………………….95
個人簡歷…………………………………………………………………………………….100
Adnan Z.A., “A sustainable world energy outlook”, World Energy Scenario, Vol 5, pp. 2-11, 2015.
Grossman P.Z., “Energy shocks, crises and the policy process: A review of theory and application”, Energy Policy, Vol. 77, pp. 56-69, 2015.
Li K., Bian H., Liu C., Zhang D. and Yang Y., “Comparison of geothermal with solar and wind power generation systems”, Renewable and Sustainable Energy Reviews, Vol. 42, pp. 1464-1474, 2015.
Kaya E., O’Sullivan M.J. and Hochstein M.P., “A three dimensional numerical model of the Waiotapu”, Waikite and Reporoa geothermal areas, New Zealand”, Journal of Volcanology and Geothermal Research, Vol. 283, pp. 127-142, 2014.
Chandarasekharam D., Aref L. and Nassir A.A., “CO2 mitigation strategy through geothermal energy, Saudi Arabia”, Renewable and Sustainable Energy Reviews, Vol. 38, pp. 154-163, 2014.
Zhao X., Wan G., “Current situation and prospect of China's geothermal resources”, Renewable and Sustainable Energy Reviews, Vol. 32, pp. 651-661, 2014.
Llanos E.M., Zarrouk S.J. and Hogarth R.A., “Numerical model of the Habanero geothermal reservoir, Australia”, Geothermics, Vol. 53, pp. 308-319, 2015.
Nasruddin, Alhamid M.I., Daud Y., Surachman A., Sugiyono A., Aditya H.B. and Mahlia T.M.I., “Potential of geothermal energy for electricity generation in Indonesia: A review”, Renewable and Sustainable Energy Reviews, Vol. 53, pp. 733-740, 2016.
Ruggero B., “Geothermal power generation in the world 2010–2014 update report”, Geothermics, Vol. 60, pp. 31-43, 2016.
Zheng B., Xu J., Ni T. and Li M., “Geothermal energy utilization trends from a technological paradigm perspective”, Renewable Energy, Vol. 77, pp. 430-441, 2015.
Gaucher E., Schoenball M., Heidbach O., Zang A., Fokker P.A., Wees J.D. and Kohl T., “Induced seismicity in geothermal reservoirs: A review of forecasting approaches”, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1473-1490, 2015.
Shortall R., Davidsdottir B. and Axelsson G., “Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks”, Renewable and Sustainable Energy Reviews, Vol. 44, pp. 391-406, 2015.
劉力維、李伯亨、謝瑞青、郭泰融等,增強型地熱發電系統,台灣能源報導,28-31頁,2012。
盧乙嘉和宋聖榮,未來能源之星-地熱,科學發展,475期,54-61頁,2012。
Geirdal C.A.C., Gudjonsdottir M.S. and Jensson P., “Economic comparison of a well-head geothermal power plant and a traditional one”, Geothermics, Vol. 53, pp. 1-13, 2015.
Li T., Zhu J., Xin S. and Zhang W., “A novel geothermal system combined power generation, gathering heat tracing, heating/domestic hot water and oil recovery in an oilfield”, Geothermics, Vol. 51, pp. 388-396, 2014.
Zhou C., “Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles”, Energy Conversion and Management, Vol. 81, pp. 72-82, 2014.
Templeton J.D., Hassani F. and Ghoreishi-Madiseh S.A., “Study of effective solar energy storage using a double pipe geothermal heat exchanger”, Renewable Energy, Vol. 86, pp. 173-181, 2016.
Mohan A.R., Turaga U., Subbaraman V., Shembekar V., Elsworth D. and Pisupati S., “Modeling the CO2-based enhanced geothermal system (EGS) paired with integrated gasification combined cycle (IGCC) for symbiotic symbiotic integration of carbon dioxide sequestration with geothermal heat utilization”, International Journal of Greenhouse Gas Control, Vol. 32, pp. 197-212, 2015.
Fouillac C., Sanjuan B. and Gentier S., and Czernichowski Lauriol I., “Could sequestration of CO2 be combined with the development of enhanced geothermal systems”, Annual Conference on Carbon Capture and Sequestration, Alexandria, Vol. 3, pp. 3-6, 2004.
Brown D.W., “A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water”, Proceedings of the 25th Workshop on Geothermal Reservoir Engineering, Stanford University, California, pp. 233-238, 2000.
楊曉明和俞旗文,超臨界二氧化碳的地質封存,水利土木科技資訊,55期,28-31頁,2012。
Duchane D., Brown D., “Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico”, GHC Bulletin, December, pp. 13-19, 2002.
Liu L., Suto Y., Bignall G., Yamasaki N. and Hashida T., “CO2 injection to granite and sandstone in experimental rock/hot water systems”, Energy Conversion and Management, Vol. 44, pp. 1399-1410, 2003.
Ueda A., Kato K. , Ohsumi T., Yajima T., Ito H., Kaieda H., Meycalf R., and Takase H., “Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions”, Geochemical Journal, Vol. 39, pp. 417-425, 2005.
Wan Y., Xu T. and Pruess K., “Impact of fluid-rock interactions on enhanced geothermal systems with CO2 as heat transmission fluid”, Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2011.
Xu T., Feng G. and Shi Y., “On fluid-rock chemical interaction in CO2-based geothermal systems”, Journal of Geochemical Exploration, Vol. 144, pp. 179-193, 2014.
Pruess K., “Enhanced geothermal systems (EGS) using CO2 as working fluid— A novel approach for generating renewable energy with simultaneous sequestration of carbon”, Geothermics, Vol. 35, pp. 351-361, 2006.
Atrens A.D., Gurgenci H. and Rudolph V., “Electricity generation using a carbon-dioxide thermosiphon”, Geothermics, Vol. 39, Issue 2, pp. 161-169, 2010.
Fard M.H., Hooman K. and Chua H.T., “Numerical simulation of a supercritical CO2 geothermosiphon”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 1447-1457, 2010.
Adams B.M., Kuehn H.T., Bielicki M.J., Randolph B.J. and Saar M.O., “On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems”, Energy, Vol. 69, pp. 409-418, 2014.
Cao W., Huang W. and Jiang F., “Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction”, International Journal of Heat and Mass Transfer, Vol. 92, pp. 1205-1217, 2016.
Pruess K., “On production behavior of enhanced geothermal systems with CO2 as working fluid”, Energy Conversion and Management, Vol. 49, pp. 1446-1454, 2008.
Portier S., Vuataz F.D., “Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France”, Comptes rendus Geoscience, Vol. 342, pp. 668-675, 2010.
Wan Y., Xu T. and Pruess K., “Impact of fluid-rock interactions on enhanced geothermal systems with CO2 as heat transmission fluid”, Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2011.
Mottaghy D., Pechnig R. and Vogt C., “The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation”, Geothermics, Vol. 40, pp. 199-210, 2011.
Sipio E.D., Chiesa S., Destro E., Galgaro A., Giaretta A., Gola G. and Manzalla A., “Rock thermal conductivity as key parameter for geothermal numerical models”, Energy Procedia, Vol. 40, pp. 87-94, 2013.
Hu L., Winterfeld P.H., Fakcharoenphol P. and Wu Y.S., “A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs”, Journal of Petroleum Science and Engineering, Vol. 107, pp. 1-11, 2013.
Wang’ombe B., Okiambe E., Omenda P., Rathore I.V.S. and Ambusso W., “A numerical solution to estimate hydro-geologic parameters of a fractured geothermal porous medium based on fluorescein thermal decay correction”, Geothermics, Vol. 51, pp. 124-129, 2014.
Luo F., Xu R.N. and Jiang P.X., “Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)”, Energy, Vol. 64, pp. 307-322, 2014.
Li M., Lior N., “Energy analysis for guiding the design of well systems of deep Enhanced Geothermal Systems”, Vol. 93, pp. 1173-1188, 2015.
Huang X., Zhu J. and Li J., “On Wellbore Heat transfer and fluid flow in the doublet of Enhanced Geothermal System”, Energy Procedia, Vol. 75, pp. 946-955, 2015.
Erol S., Hashemi M.A. and François B., “Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers”, International Journal of Thermal Sciences, Vol. 88, pp. 47-58, 2015.
O’Sullivan J., Arthur S. and O’Sullivan M., “A new reservoir model to support environmental monitoring of the Orakeikorako geothermal system”, Geothermics, Vol. 59, pp. 90-106, 2016.
Kecebas A., “Exergoenvironmental analysis for a geothermal district heating system: An application”, Energy, Vol. 94, pp. 391-400, 2016.
Liao S.M., Zhao T.S., “An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 5025-5034, 2002.
Jiang P.X., Shi R.F., Xu Y.J., He S. and Jackson J.D., “Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube”, The Journal of Supercritical Fluids, Vol. 38, pp.339-346, 2006.
Jing L., Wang W., Zhou C., Zhao H. and Yu G., “An experimental study on convective heat transfer of supercritical carbon dioxide”, International Conference on Energy and Environment Technology, pp. 18-22, 2009.
Jiang P.X., Zhao C.R., Shi R.F., Chen Y. and Ambrosini W., “Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 4748-4756, 2009.
Singh A.K., Agnihotri P., Singh N.P. and Singh A.K., “Transient and non-Darcian effects on natural convection flow in a vertical channel partially filled with porous medium: Analysis with Forchheimer-Brinkman extended Darcy model”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 1111-1120, 2011.
Bae Y.Y., Kim H.Y. and Yoo H.T.,“Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures”, International Journal of Heat and Fluid Flow, Vol. 32, pp. 340-351, 2011.
Saeid S., Al-Khoury R. and Barends F., “An efficient computational model for deep low-enthalpy geothermal systems”, Computer and Geosciences, Vol. 51, pp. 400-409, 2013.
Jiang P.X., Liu B., Zhao C.R. and Luo F., “Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime”, International Journal of Heat and Mass Transfer, Vol. 56, pp. 741-749, 2013.
Alberto O.T.J., Whitaker S., “Heat transfer at the boundary between a porous medium and a homogeneous fluid”, Vol. 40, pp. 2691-2707, 1997.
dell’Isola F., Madeo A. and Seppecher P., “Boundary conditions at fluid-permeable interfaces in porous media: A variational approach”, International Journal of Solids and Structures, Vol. 46, pp. 3150-3164, 2009.
Yang K., Vafai K., “Analysis of temperature gradient bifurcation in porous media– An exact solution”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 4316-4325, 2010.
Musuuza J.L., Radu F.A. and Attinger S., “The effect of dispersion on the stability of density-driven flows in saturated homogeneous porous media”, Advances in Water Resources, Vol. 34, pp. 417-432, 2011.
Nelson M.G., Bayer P. and Blum P., “Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions”, International Journal of Thermal Sciences, Vol. 50, pp. 1223-1231, 2011.
Yang K., Vafai K., “Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects— An exact solution”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 5286-5297, 2011.
Jeong N., Choi D.H., “Estimation of the thermal dispersion in a porous medium of complex structures using a lattice Boltzmann method”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 4389-4399, 2011.
Özgümüş T., Mobedi M., Özkol Ü. and Nakayama A., “Thermal dispersion in porous media– A review on approaches in experimental studies”, The 6th International Advanced Technologies Symposium, Elazığ, Turkey, pp. 266-271, 2011.
Wu Z., Chen G.O., “Dispersion in a two-zone packed tube: An extended Taylor’s analysis”, International Journal of Engineering Science, Vol. 50, pp. 113-123, 2012.
Liu G., Zhou Z., Li Z. and Zhou Y., “Analysis and experimental study on thermal dispersion effect of small scale saturated porous aquifer”, Energy, Vol. 67, pp. 411-421, 2014.
Bautista O., Me ́ndez F. and Bautista E.G., “Thermal dispersion driven by the spontaneous imbibition process”, Applied Mathematical Modelling, Vol. 34, pp. 4184-4195, 2015.
Hanak D.P., Biluyok C., Anthony E.J. and Manovic V., “Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant”, International Journal of Greenhouse Gas Control, Vol. 42, pp. 226-236, 2015.
Asif M., Bak C., Saleem M.W. and Kim W.S., “Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture”, Fuel, Vol. 160, pp. 513-524, 2015.
Xu Y., Zhao J., Wu W. and Jin B., “Experimental and theoretical studies on the influence of ionic liquids as additives on ammonia-based CO2 capture”, International Journal of Greenhouse Gas Control, Vol. 42, pp. 454-460, 2015.
Lin H., He Z., Sun Z., Kniep J., Ng A. and Baker R.W., Merkel T.C.,“CO2-selective membranes for hydrogen production and CO2 capture – Part II: Techno-economic analysis”, Journal of Membrane Science, Vol. 493, pp. 794-806, 2015.
Amouroux J., Siffert P., Massue ́ J.P., Cavadias S., Trujillo B., Hashimoto K., Rutberg P., Dresvin S. and Wang X., “Carbon dioxide: A new material for energy storage”, Progress in Natural Science: Materials International, Vol. 24, pp. 295-304, 2014.
魏啟涵,超臨界二氧化碳於增強型地熱系統儲集層取熱之模擬,國立臺南大學機電系統工程研究所碩士論文,2014。
鍾明哲,超臨界CO2於多孔介質流動之取熱實驗探討增強型地熱系統之熱傳現象,國立臺南大學機電系統工程研究所碩士論文,2014。
黃子祐,超臨界二氧化碳之水平管孔隙流熱傳特性研究,國立臺南大學機電系統工程研究所碩士論文,2015。
Darcy H., “Les Fontaines Publiques de la Ville de Dijon”, Dalmont, Paris, 1856.
Guta L., Sundar S., “Navier-Stokes-Binnkman system for interaction of viscous waves with a submerged porous structure”, Tamkag Journal of Mathmatics, Vol. 41, pp. 217-243, 2010.
Martys N., Bentz D. P. and Garboczi E. J., “Computer simulation study of the effective viscosity in Brinkman's equation”, Physics & Fluids, Vol. 6, pp.1434-1439, 1994.
Khanafer K., Vafai K., “Transport through porous media a synthesis of the state of the art for the past couple of decade”, Annual Review of Heat Transfer, Vol. 14, pp. 345-383, 2005.
Erol S., Hashemi M.A. and François B., “Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers”, International Journal of Thermal Sciences, Vol. 88, pp. 47-58, 2015.
Saeid S., Al-Khoury R. and Barends F., “An efficient computational model for deep low-enthalpy geothermal systems”, Computer and Geosciences, Vol. 51, pp. 400-409, 2013.
Ozudogru T.Y., Olgun C.G. and Senol A., “3D numerical modeling of vertical geothermal heat exchangers”, Geothermics, Vol. 51, pp. 312-324, 2014.
Fard M.H., Hooman K. and Chua H.T., “Numerical simulation of a supercritical CO2 geothermosiphon”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 1447-1457, 2010.
Zhang L., Li D., Ren B., Cui G., Zhuang Y. and Ren S., “Potential Assessment of CO2 Geological Storage in Geothermal Reservoirs Associated with Heat Mining: Case Studies from China”, Energy Procedia, Vol. 63, pp. 7651-7662, 2014.
Portier S., Vuataz F.D., “Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France”, Comptes rendus Geoscience, Vol. 342, pp. 668-675, 2010.
Luo F., Xu R.N. and Jiang P.X., “Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)”, Energy, Vol. 64, pp. 307-322, 2014.
Jiang P., Li X., Xu R. and Zhang F., “Heat extraction of novel underground well pattern systems for geothermal energy exploitation”, Renewable Energy, Vol. 90, pp. 83-94, 2016.
Adams B.M., Kuehn T.H., Bielicki J.M., Randolph J.G. and Saar M.O., “A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions”, Applied Energy, Vol. 140, pp. 365-377, 2015.
Hu L., Winterfeld P.H., Fakcharoenphol P. and Wu Y.S., “A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs”, Journal of Petroleum Science and Engineering, Vol. 107, pp. 1-11, 2013.
Tambach T.J., Koenen M., Wasch L.J. and Bergen F.V., “Geochemical evaluation of CO2 injection and containment in adepleted gas field”, International Journal of Greenhouse Gas Control, Vol. 32, pp. 61-80, 2015.
Pan L., Freifeld B., Doughty C., Zakem S., Sheu M., Cutright B. and Terrall T., “Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid”, Geothermics, Vol. 53, pp. 100-113, 2015.
Span P., Wagner W., “A new equation of state for CO2 covering the fluid region from the Triple-Point temperature to 1100K at pressures up to 800MPa”, Journal of Physical and Chemical Reference Data,Vol. 25, pp.1509-1596, 1996.
Jiang P.X., Shi R.F., Zhao C.R. and Xu Y.J., “Experimental and numerical study of convection heat transferof CO2 at supercritical pressures in vertical porous tubes”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 998-1011, 2008.
Nelder J.A., Mead R., “A simplex method for function minimization”, Function, pp. 308-313, 1965.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top