(3.236.122.9) 您好!臺灣時間:2021/05/09 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李汶霖
研究生(外文):Li, WEN-LIN
論文名稱:以MANFIS-PSO控制法來開發臺灣最佳潮汐能之研究
論文名稱(外文):Optimal Tide-Energy Exploration for Taiwan based on MANFIS-PSO Control
指導教授:黃崇能黃崇能引用關係
指導教授(外文):HUANG, CHUNG-NENG
口試委員:黃崇能連長華郭振坤
口試委員(外文):HUANG, CHUNG-NENGLIEN, CHANG-HUAKUO, JENN-KUN
口試日期:2016-08-22
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:44
中文關鍵詞:潮汐發電臺灣自適應性模糊類神經(MANFIS)粒子群聚演算法(PSO)
外文關鍵詞:Tide energyTaiwanMANFIS(Multiple Adaptive Neuro-Fuzzy Inference System)PSO(Particle Swarm Optimization)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來因為石油危機的浮現及環保意識的逐漸高漲,可再生能源便受到全球各地的矚目,而地球表面被水覆蓋的部份高達71%,因此潮汐發電具有高度的潛在性,且海島型國家適合發展潮汐發電,因臺灣有得天獨厚的海島型環境,本論文以臺灣為例並參考交通部中央氣象局所提供的潮汐預報資料,先以卡爾曼濾波器估測潮汐下一步之動作,再以MANFIS-PSO控制法去穩定潮汐發電之輸出,最後經模擬及穩定度計算其改善效率約7%左右。
In recent years, because of the oil crisis and the emergence of environmental awareness is gradually rising, renewable energy will be attracted attention around the world, and 71% of the Earth's surface is covered by water. So a high degree of tidal power potential, and the island nation for development of tidal power, because Taiwan has a unique island environments, this paper takes the case of Taiwan and reference tide forecasts central weather Bureau data provided by the Kalman filter to estimate the tidal action of the next step, then MANFIS- PSO controller to stabilize the output of tide power. Finally, calculate the improved efficiency and stability of the simulation by about 7%.


摘要
Abstract
致謝
目錄
表目錄
圖目錄
第一章 緒論
1.1研究背景與動機
1.2研究目的
1.3研究方法及流程
1.4本文架構
第二章 文獻探討
2.1可再生能源的發展
2.2潮汐發電系統發展現況與優缺點
2.3適應性PID控制方法(PSO、FUZZY、MANFIS)
第三章 整體系統的控制架構和數學模型的建立
3.1潮汐發電系統模型
3.1.1潮汐發電原理
3.1.2潮汐發電系統架構及模型建立
3.2 PID控制器設計
3.2.1 PSO-PID控制器
3.3 MANFIS-PSO-PID控制器設計
3.3.1 MANFIS系統架構
3.3.2 PSO-MANFIS-PID 控制器
3.3.3 MANFIS-PSO-PID控制器
第四章 整體系統的模擬與分析
4.1 控制器模擬
4.2 潮汐發電平台模擬與分析
第五章 結論探討與建議
5.1 結論
5.2 未來展望
參考文獻
附錄A 卡爾曼濾波器介紹
附錄B 粒子群聚法(Particle Swarm Optimization)介紹
附錄C PID控制器
附錄D 模糊控制介紹
附錄E 適應性類神經模糊推論系統(Adaptive Network -Based Fuzzy Inference System)介紹
[1] A.J.C. Trappey, C.V. Trappey, D.Y.C. Wang, S.J. Li and J.J.R Ou, “Evaluating renewable energy policies using hybrid clustering and analytic hierarchy process modeling,” Proceedings of the IEEE 2014 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) , pp. 716-720, May, 2014.

[2] 經濟部,「86-105 全國長期負載預測與電源開發規劃摘要報告」,經濟部-能源局,民國一百零五年六月

[3] 臺灣交通部中央氣象局,http://www.cwb.gov.tw/V7/forecast/fishery/tide_1.htm

[4] M. L. Abundo, M. Buhali, Ma. R. C. O. Ang, A. Cayetano, “Tidal In-Stream Energy Density Estimates for Pre-Identified Sites in the Philippines Using a Tide Height Difference-Based Metric,” EEEIC 2012 Remote Session, Singapore, May 2012.

[5] 維基百科,https://zh.wikipedia.org/wiki/可再生能源

[6] 何無忌、羅聖宗、呂威賢(2015)。臺灣海域能源臺灣海域能源。科技報導 401 http://scitechreports.blogspot.tw/2015/05/blog-post_26.html

[7] 能源科技中心,Energy Technology Center http://www.etc.ndhu.edu.tw/files/90-1090-50.php

[8] M. I. Solihin, L. F. Tack, M. L. Kean, “Tuning of PID Controller Using Particle Swarm Optimization (PSO),” Advanced Science, vol.1, Issue 4, pp. 458-461, Jan, 2011.

[9] A. ALFI, “PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems,” Acta Automatica Sinica, vol.37, Issue 5, pp. 541-549, May, 2011.

[10] A. Ghaffari, “MANFIS-based overtaking maneuver modeling and prediction of a Driver-Vehicle-Unit in real traffic flow,” 2012 IEEE International Conference on Vehicular Electronics and Safety(ICVES), Istanbul, Turkey, pp. 387-392, July, 2012.

[11] S. A. Akrami, A. El-Shafie, O. Jaafar, “Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS),” Water Resources Management, vol.27, Issue 9, pp. 3507-3523, July 2013.

[12] K. Prases, R. Dayal, “A New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System,” Mechanical Engineering, vol.8, Issue 5, pp. 2527-2535, Sep, 2014.

[13] M. M. Sabir, T. Ali, “Optimal PID controller design through swarm intelligence algorithms for sun tracking system,” Applied Mathematics and Computation, vol.274, Issue 1, pp. 690-699, 2016.

[14] Z. Zhou , M. E. H. Benbouzid , J. F. Charpentier , F. Scuiller and T. Tang, “Energy storage technologies for smoothing power fluctuations in marine current turbines,” Industrial Electronics (ISIE), 2012 IEEE International Symposium on, pp. 1425-1430, May, 2012.

[15] G. Welch1, G. Bishop, “An Introduction to the Kalman Filter,” In Computer Graphics, Annual Conference on Computer Graphics & Interactive Techniques, Aug.2001.

[16] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82, Ser. D, pp. 35-45, Mar, 1960.

[17] MathWork公司官網,http://www.mathworks.com/help/control/ref/kalman.html?s_tid=srchtitle

[18] K. T. Huang, C. N. Huang, “Design of Active Grey-Kalman System for Vehicles in Roll Steering Control,” International Journal of Science and Engineering, vol.2, No 2, pp. 45-52, 2012.

[19] Matlab程式軟體說明,Kalman Filter

[20] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, M. Valdez, “Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic,” Expert Systems with Applications, vol.40, Issue 8, pp. 3196-3206, June, 2013.

[21] Y. Fu, M. Ding, C. Zhou, “Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.42, Issue 2, pp. 511-526, July, 2011.

[22] A. Bortfeldt, “A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints,” Computers & Operations Research, vol.39, Issue 9, pp. 2248-2257, Sep, 2012.

[23] M. Hosoza, H. M. Ertuncb, M. Karabektasc, G. Ergenc, “ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends,” Applied Thermal Engineering, vol.60, Issue 2, pp. 24-32, Oct, 2013.

[24] H. Bustince, J. Fernandez, H. Hagras, F. Herrera, “Interval Type-2 Fuzzy Sets are Generalization of Interval-Valued Fuzzy Sets: Toward a Wider View on Their Relationship,” IEEE Transactions on Fuzzy Systems, vol.23, Issue 5, pp. 1876-1882, Oct, 2015.

[25] J. L. Meza, V. Santibanez, R. Soto, M. A. Llama, “Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators,” IEEE Transactions on Industrial Electronics, vol.59, Issue 6, pp. 2709-2717, Feb, 2012.

[26] L. H. Sona, N. D. Linha, H. V. Longb, “A lossless DEM compression for fast retrieval method using fuzzy clustering and MANFIS neural network,” Engineering Applications of Artificial Intelligence, vol.29, pp. 33-42, Mar, 2012.

[27] S. J. Ho, L. S. Shu, S. Y. Ho, “Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA,” IEEE Transactions on Fuzzy Systems, vol.14, Issue 3, pp. 421-434, June, 2006.
電子全文 電子全文(網際網路公開日期:20210822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔