跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉蒔穎
研究生(外文):Liu, Shih-Ying
論文名稱:研發績效之系統動態分析
論文名稱(外文):Research and Development Performance Analysis by System Dynamics
指導教授:黃啟祐黃啟祐引用關係
指導教授(外文):Huang, Chi-Yo
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:工業教育學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:88
中文關鍵詞:研發管理績效管理系統動力學決策分析
外文關鍵詞:R&D managementPerformance EvaluationSystem Dynamics (SD)Multiple Criteria Decision Making (MCDM)Information Technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
績效評估為最重要的管理工具,實時掌控組織績效,預測績效,並進而及時修正錯誤決策,對於組織效能的提升亟有助益。研發績效直接關係著成本、良率、產能,並影響企業營收。近年來,資訊科技公司面臨之競爭日增,技術生命週期日益縮減,研發績效如何提升,已經成為全球科技業最關注之議題。研發績效之評估雖然為研發管理最重要之議題,唯現有文獻多聚焦於靜態之績效分析,少有研究探討組織長時間變遷之研發績效變動狀況,唯影響研發績效之因子為數眾多,關係複雜,且難以預測,本研究將定義一基於多準則決策方法與系統動態學之分析架構以解決前述研發績效動態分析的問題。為分析研發組織之動態,本研究首先將回顧文獻,歸納影響研發組織績效之因素,並邀集專家,以修正式德菲法確認之,其次,本研究將以決策實驗室分析法建構影響研發績效關鍵要素之影響關係。基於前述影響關係,本研究進而導入系統動態學,預測未來研發績效之變遷。本研究將以全球主要之電子系統代工廠商為例,實證本分析架構之可行性。驗證完整之系統動態分析架構,將可作為科技公司研發績效評估之用。
Performance Evaluation is one of the most important management tools which can real-time control the performance of an organization, predict future performance, and thus, correct wrong decisions on time. However, most existing literature focused more on static analysis of the R&D performance. Very few scholars investigated how the R&D performance of some specific organization changes continuously over a period time, or the dynamic analysis. Furthermore, the factors which can influence the R&D performance evaluation include numerous and complex mutual influence relationships which are difficult to predict. The analytic and prediction framework will first be derived by using the historic data being derived during past five years. Then, the verified model will further be used to predict the R&D performance in the future. One of the world's leading electronic manufacturing service (EMS) provider will be used to verify the feasibility of the analytic and prediction framework. The well verified analytic and forecast framework will be used by EMS in the future.
摘要 i
Abstract ii
Table of Content iii
List of Table v
List of Figure vi
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Motivations 2
1.3 Research Purpose 4
1.4 Research Scope and Structure 4
1.5 Research Limitations 5
1.6 Research Methods 6
Chapter 2 Literature Review 7
2.1 R&D Performance Management 7
2.2 Feed Forward and Feedback Control in R&D Performance Management 10
2.3 R&D Performance and Key performance indicators (KPIs) 11
2.4 System dynamic and project management (SD) 15
Chapter 3 Research Method 19
3.1 Modified Delphi Method 25
3.2 Decision Making Trial and Evaluation Laboratory (DEMATEL) 25
3.3 SD 29
3.4 R&D Performances Structure Casual Loop 31
3.5 Process Flow Design and Mathematical Model 33
Chapter 4 Empirical Study 43
4.1 Criteria Definition by Modified Delphi Method 43
4.2 Decision Problems Structuring on Experts Based DEMATEL 47
4.3 Results of SD System Simulation 57
4.4 Process Flow Design and Mathematical Model base on Connected Relationship of DEMATEL 61
4.5 Results of SD System Simulation base on Connected Relationship of DEMATEL 70
Chapter 5 Discussion 75
5.1 Comparison of the Results by System Dynamics and DEMATEL 77
Chapter 6 Conclusion 81
References 83

Amaratunga, D., Baldry, D., & Sarshar, M. (2001). Process improvement through performance measurement: the balanced scorecard methodology. Work study, 50(5), 179-189.

Amrina, E., & Vilsi, A. L. (2015). Key Performance Indicators for Sustainable Manufacturing Evaluation in Cement Industry. Procedia CIRP, 26, 19-23.

Barlas, Y. (1989). Multiple tests for validation of SD type of simulation models. European journal of operational research, 42(1), 59-87.

Barlas, Y. (1996). Formal aspects of model validity and validation in SD.
SD Review, 12(3), 183-210.

Berends, P. A. J., & Romme, A. G. L. (2001). Cyclicality of capital-intensive industries: a system dynamics simulation study of the paper industry. Omega, 29(6), 543-552.

Bilderbeek, J. (1999). R&D performance measurement: more than choosing a set of metrics. R&D Management, 29(1), 35-46.

Birchall, D., Chanaron, J.-J., Tovstiga, G., & Hillenbrand, C. (2011). Innovation performance measurement: current practices, issues and management challenges. International Journal of Technology Management, 56(1), 1-20.

Bowon, K. Heungshik (2002). Economic comoensation compositions preferred by R&D personnel of different R&D types&intrinsic values. R&D management, 32(1).

Bremser, W. G., & Barsky, N. P. (2004). Utilizing the balanced scorecard for R&D performance measurement. R&D Management, 34(3), 229-238.

Chen, C.-T., Chien, C.-F., Lin, M.-H., & Wang, J.-T. (2004). Using DEA to evaluate R&D performance of the computers and peripherals firms in Taiwan. International Journal of Business, 9(4).

Chen, J. H., & Jan, T. S. (2005). A variety-increasing view of the development of the semiconductor industry in Taiwan. Technological Forecasting and Social Change, 72(7), 850-865.

Chiesa, V., & Frattini, F. (2007). Exploring the differences in performance measurement between research and development: evidence from a

multiple case study. R&D Management, 37(4), 283-301.

Chiesa, V., Frattini, F., Lazzarotti, V., & Manzini, R. (2007). How do measurement objectives influence the R&D performance measurement system design? Evidence from a multiple case study. Management Research News, 30(3), 187-202.

Chiesa, V., & Masella, C. (1996). Searching for an effective measure of R&D performance. Management Decision, 34(7), 49-57.

Coccia, M. (2004). New models for measuring the R&D performance and identifying the productivity of public research institutes. R&D Management, 34(3), 267-280.
Cooper, R. G. (1994). Third‐generation new product processes. Journal of product innovation management, 11(1), 3-14.
Cooper, R. G., & Kleinschmidt, E. J. (1987). What makes a new product a winner:* Success factors at the project level. R&D Management, 17(3), 175-189.

Cox, R. F., Issa, R. R. A., & Ahrens, D. (2003). Management's perception of key performance indicators for construction. Journal of construction engineering and management, 129(2), 142-151.

Coyle, R. G., & Morecroft, J. (1999). Special issue: system dynamics for policy, strategy and management education. J Opl Res Soc, 50(4), 291-449.

Czarnitzki, D., Ebersberger, B., & Fier, A. (2007). The relationship between R&D collaboration, subsidies and R&D performance: empirical evidence from Finland and Germany. Journal of applied econometrics, 22(7), 1347-1366.
Dahan, E., & Srinivasan, V. (2000). The predictive power of internet‐based product concept testing using visual depiction and animation. Journal of Product Innovation Management, 17(2), 99-109.
Dean, J. W., & Bowen, D. E. (1994). Management theory and total quality: improving research and practice through theory development. Academy of management review, 19(3), 392-418.

Fey, C. F., & Birkinshaw, J. (2005). External sources of knowledge, governance mode, and R&D performance. Journal of Management, 31(4), 597-621.

Fisher, D. K., Norvell, J., Sonka, S., & Nelson, M. J. (2000). Understanding technology adoption through SD modeling: implications for agribusiness management. The International Food and Agribusiness Management Review, 3(3), 281-296.

Ford, A. (1997). System dynamics and the electric power industry. System Dynamics Review, 13(1), 57-85.

Forrester, J. S., Fishbein, M., Helfant, R., & Fagin, J. (1991). A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. Journal of the American College of Cardiology, 17(3), 758-769.

Godener, A., & Söderquist, K. E. (2004). Use and impact of performance measurement results in R&D and NPD: an exploratory study. R&D Management, 34(2), 191-219.

Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E.
H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413-432.

Hiebl, M. R. W. (2015). Family involvement and organizational ambidexterity in later-generation family businesses: A framework for further investigation. Management Decision, 53(5), 1061-1082.

Hudson, M., Smart, A., & Bourne, M. (2001). Theory and practice in SME performance measurement systems. International journal of operations & production management, 21(8), 1096-1115.

Ihsan, S. I., Faris, W. F., & Ahmadian, M. (2008). Analysis of control policies and dynamic response of a Q-car 2-DOF semi active system. Shock and Vibration, 15(5), 573-582.

Jan, T. S., & Hsiao, C. T. (2004). A four-role model of the automotive industry development in developing countries: a case in Taiwan. Journal of the Operational Research Society, 55(11), 1145-1155.

Jyoti, Banwet, D., & Deshmukh, S. (2008). Evaluating performance of national R&D organizations using integrated DEA-AHP technique. International journal of productivity and performance management, 57(5), 370-388.

Kanji, G. K., & e Sá, P. M. (2002). Kanji's business scorecard. Total Quality Management, 13(1), 13-27.

Kerssens‐van Drongelen, I., Nixon, B., & Pearson, A. (2000). Performance measurement in industrial R&D. International Journal of Management Reviews, 2(2), 111-143.
Kueng, P. (2000). Process performance measurement system: a tool to support process-based organizations. Total Quality Management, 11(1), 67-85.

Lane, D. C. (1995). Modeling for learning organizations. Journal of the Operational Research Society, 46(6), 793-795.

Lazzarotti, V., Manzini, R., & Mari, L. (2011). A model for R&D performance measurement. International journal of production economics, 134(1), 212-223.
Löfsten, H. (2014). Information Structures and Business Performance–Implications for Technology‐ based Firm's Innovation
Performance. Knowledge and Process Management, 21(4), 246-259.

Li, P., & Tang, G. (2009). Performance measurement design within its organisational context—Evidence from China. Management Accounting Research, 20(3), 193-207.

Mahajan, V., & Wind, J. (1992). New product models: Practice, shortcomings and desired improvements. Journal of Product Innovation Management, 9(2), 128-139.

Mandal, S., Ray, S., Roy, S., & Jørgensen, S. E. (2006). Order to chaos and vice versa in an aquatic ecosystem. ecological modelling, 197(3), 498-504.

Nett, C. N., Jacobson, C., & Balas, M. (1984). A connection between state-space and doubly coprime fractional representations. Automatic Control, IEEE Transactions on, 29(9), 831-832.

Nijssen, E. J., & Lieshout, K. F. M. (1995). Awareness, use and effectiveness of models and methods for new product development. European Journal of Marketing, 29(10), 27-44.

Olson, E. M., Walker Jr, O. C., & Ruekert, R. W. (1995). Organizing for effective new product development: The moderating role of product innovativeness. The Journal of Marketing, 48-62.

Ottum, B. D., & Moore, W. L. (1997). The role of market information in new product success/failure. Journal of Product Innovation Management, 14(4), 258-273.

Pisano, G.P. 2012. Creating an R&D Strategy. Harvard Business School Working Paper, No. 12-095.

Podgórski, D. (2015). Measuring operational performance of OSH management system–A demonstration of AHP-based selection of leading key performance indicators. Safety science, 73, 146-166.

Savioz, P., & Blum, M. (2002). Strategic forecast tool for SMEs: how the opportunity landscape interacts with business strategy to anticipate technological trends. Technovation, 22(2), 91-100.

Schrader, S. (1996). Innovationsmanagement. Handwörterbuch der Produktionswirtschaft, 2, 744-758.

Schultz, C., Schreyoegg, J., & von Reitzenstein, C. (2013). The moderating role of internal and external resources on the performance effect of multitasking: evidence from the R&D performance of surgeons. Research Policy, 42(8), 1356-1365.

Schmidt, R. L., & Freeland, J. R. (1992). Recent progress in modeling R&D project-selection processes. IEEE Transactions on Engineering Management, 39(2), 189-201.

Schumann Jr, P. A., Ransley, D. L., & Prestwood, D. C. L. (1995). Measuring r&D Performance. Research-Technology Management, 38(3), 45-54.

Shin, J., & Park, Y. (2009). Brownian agent-based technology forecasting.
Technological Forecasting and Social Change, 76(8), 1078-1091.

Snabe, B., & Größler, A. (2006). System dynamics modelling for strategy implementation—case study and issues. Systems Research and Behavioral Science, 23(4), 467-481.

Soderquist, K., & Nellore, R. (2000). Information systems in fast cycle development: identifying user needs in integrated automotive component development. R and D Management, 30(3), 199-212.

Spring, M., McQuater, R., Swift, K., Dale, B., & Booker, J. (1998). The use of quality tools and techniques in product introduction: an assessment methodology. The TQM Magazine, 10(1), 45-50.

Sterman, J. D. (2002). All models are wrong: reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501-531.

Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: initial results of a systems thinking inventory.SD Review, 16(4), 249-286.

Tiţă, S.-M. (2012). Measuring Scientific Research Performance of Romanian Public Research Entities. International Journal of Sustainable Economies Management (IJSEM), 1(4), 52-66.

Tomkovick, C., & Miller, C. (2000). Perspective—riding the wind: managing new product development in an age of change. Journal of Product Innovation Management, 17(6), 413-423.

Van Camp, J., & Braet, J. (2016). Taxonomizing performance measurement systems’ failures. International Journal of Productivity and Performance Management, 65(5), 672-693.

Veit, K. P. (1978). System dynamics in corporate long-range strategic planning. Managerial Applications of System Dynamics. Productivity Press, Cambridge, MA, 533-544.

Venkataraman, R. R., & Pinto, J. K. (2005). Value Management. Cost and Value Management in Projects, 163-184.

Wakasa, T., Sakai, H., Okamura, H., Otsu, H., Fujita, S., Ishida, S., . . . Nonaka, T. (1998). Performance of the neutron polarimeter NPOL2 for (p, n) polarization transfer measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 404(2), 355-372.

Wallin, C., & Gilman, J. J. (1986). DETERMINING THE OPTIMUM LEVEL FOR RESEARCH-AND-DEVELOPMENT SPENDING.
Research management, 29(5), 19-24.

Wang, E. C. (2007). R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach. Journal of Policy Modeling, 29(2), 345-360.

Wang, K. J., Wang, S. M., & Yang, S. J. (2007). A resource portfolio model for equipment investment and allocation of semiconductor testing industry. European Journal of Operational Research, 179(2), 390-403.

Wu, H.-Y., Tzeng, G.-H., & Chen, Y.-H. (2009). A fuzzy MCDM approach for evaluating banking performance based on Balanced Scorecard. Expert Systems with Applications, 36(6), 10135-10147.

Yeh, T.-M., Pai, F.-Y., & Yang, C.-C. (2010). Performance improvement in new product development with effective tools and techniques adoption for high-tech industries. Quality & Quantity, 44(1), 131-152.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊