跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴心如
研究生(外文):Tai, Hsin-Ju
論文名稱:臺灣非火山長微震之活動特徵及可能之孕震構造和機制
論文名稱(外文):Characteristics and possible mechanisms of non-volcanic ambient tremor in Taiwan
指導教授:陳卉瑄陳卉瑄引用關係
指導教授(外文):Chen, Huihsuan
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:非火山長微震慢地震
外文關鍵詞:Non-volcanic tremorslow earthquakeambient tremor
相關次數:
  • 被引用被引用:5
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
非火山自發型長微震(ambient tremor)常見於隱沒帶孕震區深部,是種介於一般地震的快速破裂與無震滑移之間的能量釋放形式,這種活動所輻射出的地震波非常微弱而持續時間長、,釋放的地震矩能量可對等於規模六的地震事件,對於了解隱沒帶應力傳遞提供了重要資訊。
本研究首先比較不同偵測手段的長微震事件本質之差異,以進行目錄整合、並提供最佳偵測之標準化流程。利用(1)多測站波形具到時一致的能量脈衝;(2)初步定位結果收斂;(3)無體波特徵及;(4)持續時間大於60秒為條件,本研究設計了半自動化的長微震偵測系統,偵測出前人目錄四倍以上事件量。藉由分析新的2007-2012長微震目錄,我們發現長微震事件比過去研究發現之群聚現象更向北方延展,對應到一個東南北-西南走向、往東南傾的可能構造,深度約在20-40 公里間。長微震事件被發現多發生於潮位升高時,並且與理論潮汐的應力模型相比,亦在潮汐引發剪應力增加時處有最高相關性,指示長微震的發生可能受潮汐應力觸發。我們並利用長微震和潮汐的相關性,尋找長微震對應的構造面,最佳影響面及錯動型態為(strike,dip,rake)=(60°,40°,90°)。同時我們也發現,長微震具有的年週期活躍特性,與其他連續資料相比,對應到高潮位、高降雨、高地下水位、低氣壓環境,說明水氣的季節性變化與深部的長微震有可能有相同機制,或是具有因果關係。在空間特徵上,台灣的長微震位於中央山脈南段低速區域,其向上延伸有一低電阻、高含水的無震區;長微震本身亦處於高Vp/Vs與高地熱梯度區域,暗示區域可能因高度變質脫水作用而富含流體。
In the seismogenic zone, ordinary earthquakes experience rapid slip on a fault with a few ~ tens of second durations. While below the seismogenic zone, slow rupture propagation and/or low slip rate can be also taking place with a wide range of duration from minutes to days. This class of slow-slip events, characterized by noise-like, long-lasted signals with consistent arrival at various stations is called tremors. It is believed to play an important role in the assessment of regional seismic hazard and plate boundary processes. Unlike subduction zones and transform faults where the ambient tremors occur on a known fault plane, the tremors in Taiwan are located in a place where no active faults have been identified. To better understand the possible generation mechanism, carefully examining different detection schemes for a more complete tremor catalog is necessary.
In this study we adopt the identification scheme similar to Ide et al. (2015) but applied slightly different techniques: (1) Higher waveform cross-correlation coefficient (>0.6) (2) careful visual inspection for excluding local earthquakes and short-lasted event (duration < 60 s) (3) Signal to noise ratio higher than 1.2 and lower than 30 (4) No spatio-temporal clustering technique used. We also develop an approach to systematically determine the duration of tremor events. As a result, 1893 tremor events with duration ranging from 60 s to 2216 s are found during the period of 2007-2012. They are mainly located underneath southern Central Range, forming a NS striking and SE-dipping ellipsoid structure at a depth of 15-45 km. The up-dip extension of this tremor structure reaches an aseismic zone under the western flank of Central Range at shallow depth, where is an area characterized by high heat flow, low Vp and Vs anomaly. Power spectrum analysis of tremors reveals several sharp peaks that are consistent with that from tidal data, indicating strong tidal modulation. The most significant annual periodicity is also found in ground water and strainmeter data, indicating an influence of Sun on hydro-geological activity. Tremor activity exists a clear tidal modulation of the annual, semidiurnal, and diurnal constituents, ~67% tremors happened while the observation of tide level higher than average, ~83% tremors happened while tide level rise. This phenomenon indicates solid earth and ocean tide may influence tremor activity. With this tidal-tremor correlation, we found a best response structure of tidal induced shear stress: (strike,dip,rake)=(60°,40°,90°), which is similar with both ellipsoid structure and the mechanism of very-low frequency event in previous study.
目錄
中文摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅷ
第一章 研究動機……………………………………………………………………………………1
第二章 前人研究……………………………………………………………………………………2
2.1 長微震的重要性………………………………………………………………………2
2.1.1長微震的定義…………………………………………………………………2
2.1.2全世界長微震的發現與其特徵………………………………………………3
2.1.3 長微震與慢地震……………………………………………………………9
2.1.4長微震發震機制……………………………………………………………13
2.2 台灣自發型非火山長微震研究………………………………………………………15
2.2.1 莊育菱 (2012)之偵測手段………………………………………………16
2.2.1.1 半自動化偵測系統………………………………………………17
2.2.1.2 長微震定位:WECC……………………………………………19
2.2.1.3 台灣自發型長微震特徵…………………………………………20
2.2.2 Ide et al. (2015)………………………………………………………21
2.2.2.1 hypoecc偵測與定位方法………………………………………21
2.2.2.2 時間空間收斂門檻………………………………………………24
2.2.2.3 超低頻地震(Very Low Frequency event)的震源機制解……25
2.2.2.4 長微震的潮汐相關性……………………………………………26
2.2.3 不同偵測方法比較…………………………………………………………………28
第三章 研究方法…………………………………………………………………………………29
3.1 本研究之偵測方法與資料……………………………………………………………29
3.1.1 hypoecc參數選定…………………………………………………………33
3.1.2 波形自動辨識系統(Tremor Automatic Identification, TAI)………34
3.2 潮汐資料與理論潮汐應力……………………………………………………………39
第四章 研究結果…………………………………………………………………………………41
4.1 長微震偵測結果………………………………………………………………………41
4.2 長微震的活動度………………………………………………………………………44
4.3 長微震的活動時間特性………………………………………………………………46
4.4 長微震的空間分布與定位誤差………………………………………………………51
4.5最佳潮汐影響面………………………………………………………………………53
第五章 討論 ………………………………………………………………………………………55
5.1偵測系統的問題及未來發展…………………………………………………………55
5.1.1 hypoecc偵測方法的限制…………………………………………………55
5.1.2 波形辨識系統之缺失………………………………………………………56
5.1.3 非長微震事件種類…………………………………………………………57
5.2 長微震活動的影響因子………………………………………………………………59
5.2.1 長週期活動…………………………………………………………………59
5.2.2 日活躍趨勢…………………………………………………………………61
5.2.3 短周期活動…………………………………………………………………63
5.3 長微震之孕震機制……………………………………………………………………65
5.3.1 超低頻地震(VLF)…………………………………………………………65
5.3.2 低頻地震事件………………………………………………………………67
5.3.3 長微震震源區域環境………………………………………………………68
第六章 結論………………………………………………………………………………………74
參考文獻……………………………………………………………………………………………75

Agnew, D. C. (2012), SPOTL: Some programs for ocean-tide loading, SIO Tech. Rep., Scripps Institution of Oceanography.
Bertrand, E. A., M. J. Unsworth, C.-W. Chiang, C.-S. Chen, C.-C. Chen, F. T. Wu, E. Türkoğlu, H.-L. Hsu, and G. J. Hill (2012), Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision, J. Geophys. Res., 117, B01402, doi:10.1029/2011JB008688.
Beroza, G. C. & Ide, S. (2011),Slow earthquakes and nonvolcanic tremor. Annu. Rev.Earth Planet. Sci. 39, 271–296.
Chao, K., Z. Peng, C. Wu, C.-C. Tang, and C.-H. Lin (2012), Remote triggering of non-volcanic tremor around Taiwan, Geophys. J. Int., 188,301–324, doi:10.1111/j.1365-246X.2011.05261.x.
Chi, W. C., and D. L. Reed (2008), Evolution of shallow, crustal thermal structure from subduction to collision: An example from Taiwan, Geol. Soc. Am. Bull., 120, 679–690, doi:10.1130/B26210.1.
Chiang, C. W., C. C. Chen, M. J. Unsworth, E. A. Bertrand, C. S. Chen, T. D. Kieu, and H. L. Hsu (2010), The deep electrical structure of southern Taiwan and its tectonic implications, Terr. Atmos. Ocean. Sci., 21(6), 879–895, doi:10.3319/TAO.2010.02.25.01(T).
Chuang, L. Y., Chen, K. H., Wech, A., Byrne, T., Peng, W. (2013), Ambient tremors in a collisional orogenic belt, Geophys. Res. Lett., 41, 1485–1491,doi:10.1002/2014GL059476.
Dragert, H., K. Wang, and T. S. James (2001), A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525 – 1528.
Dziewonski, A. M., and A. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356.
Egbert, G. D., and L. Erofeeva (2002), Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, 183–204.
Frank, W. B., N. M. Shapiro, V. Kostoglodov, A. L. Husker, M. Campillo, J. S. Payero, and G. A. Prieto (2013), Low-frequency earthquakes in the Mexican Sweet Spot, Geophys. Res. Lett., 40, 2661–2666, doi:10.1002/grl.50561.
Gomberg et al., (2010). Slow slip phenomena in Cascadia from 2007 and beyond: A review. GSA Bull. 122, p. 963 – 978. doi: 10.1130/B30287.1
Hsieh, H.H., Chen, C.H., Lin, PY., Yen, H.Y. (2014), Curie point depth from spectral analysis of magnetic data in Taiwan, Journal of Asian Earth Sciences, 90, 26-33. doi:10.1016/j.jseaes.2014.04.007
H.-H. Huang, Y.-M. Wu, X. Song, C.-H. Chang, H. Kuo-Chen, S.-J. Lee, (2014). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophys. Res. Lett. 41, doi:10.1002/2014GL061115
Hirose, H. and Obara, K. (2010). Recurrence behavior of short-term slow slip and correlated nonvolcanic tremor episodes in western Shikoku, southwest Japan. Journal of Geophysical Research 115. doi: 10.1029/2008JB006050. issn: 0148-0227.
Ide, S. (2008), A Brownian walk model for slow earthquakes, Geophys. Res. Lett., 35, L17301, doi:10.1029/2008GL034821.
Ide, S. (2010), Striations, duration, migration and tidal response in deep tremor, Nature, 466, 356–359, doi:10.1038/nature09251.
Ide, S. (2012), Variety and spatial heterogeneity of tectonic tremor worldwide, J. Geophys. Res., 117, B03302, doi:10.1029/2011JB008840.
Ide, S., and Y. Tanaka (2014), Controls on plate motion by oscillating tidal stress: Evidence from deep tremors in western Japan, Geophys. Res. Lett., 41, 3842–3850, doi:10.1002/2014GL060035.
Ide, S., and S. Yabe (2014), Universality of slow earthquakes in the very low frequency band, Geophys. Res. Lett., 41, 2786–2793, doi:10.1002/2014GL059712.
Ide, S., D. R. Shelly, and G. C. Beroza (2007), The mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface, Geophys. Res. Lett., 34, L03308, doi:10.1029/2006GL028890.
Ide, S., K. Imanishi, Y. Yoshida, G. C. Beroza, and D. R. Shelly (2008), Bridging the gap between seismically and geodetically detected slow earthquakes, Geophys. Res. Lett., 35, L10305, doi:10.1029/2008GL034014.
Ide, S. (2010), Striations, duration, migration and tidal response in deep tremor, Nature, 466, 356–359, doi:10.1038/nature09251.
Ide, S., S. Yabe, H.-Ju. Tai, K. H. Chen(2015), Thrust type-focal mechanisms of tectonic tremors in Taiwan: Evidence of subduction, Geophysical Research Letters, in press, doi:10.1002/2015GL063794, 2015/04.
Kao, H., Y.-H. Liu, and P.-R. Jian, 2001. Source parameters of regional earthquakes in Taiwan: January-December 1997, Terr. Atmos. Oceanic Sci., 12, 431-439.
Kuo-Chen, H., 2011. Imaging Deep Structures under the Taiwan Orogen: Toward Tectonic Model Testing. Ph.D. Dissertation, State University of New York, Binghamton, New York.
Kuo-Chen, H., F. T. Wu, D. M. Jenkins, J. Mechie, S. W. Roecker, C.-Y. Wang, and B.-S. Huang (2012), Seismic evidence for the α-β quartz transition beneath Taiwan from Vp/Vs tomography, Geophys. Res. Lett., 39, L22302, doi:10.1029/2012GL053649.
Kuo-Chen, H., Wu, F.T., Roecker, S.W., (2012),. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic datasets. J. Geophys. Res. 117, B06306. doi:10.1029/2011JB009108.
Lambert, A., H. Kao, G. Rogers & N. Courtier (2009) Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. J. Geophys. Res. Solid Earth 114, doi:10.1029/2008JB006038
La Rocca, M., et al. (2009), Cascadia tremor located near plate interface constrained by S minus P wave times, Science, 323(5914), 620 – 623, doi:10.1126/science.1167112.
Lee, C. P., N. Hirata, B. S. Huang, W. G. Huang, and Y. B. Tsai (2010), Evidence of a highly attenuative aseismic zone in the active collision orogen of Taiwan, Tectonophysics, 489(1-4), 128–138
Nakata,R., N. Suda, & H. Tsuruoka, (2008), Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci. 1, 676–678
Nadeau, R. M. & Guilhem, A, (2009), Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. Science 325, 191–193
Okaya, D., Wu, F., Wang, C.Y., Yen, H.Y., Huang, B.S., Brown, L., Liang, W.-T., 2009.Joint passive/controlled source seismic experiment across Taiwan. Eos Trans.Am. Geophys. Union 90
Rubinstein, J. L., J. Gomberg, J. E. Vidale, A. G. Wech, H. Kao, K. C. Creager, and G. Rogers (2009), Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island, J. Geophys. Res., 114, B00A01, doi:10.1029/2008JB005875
Saffer, D.M., Wallace, L.M., 2015. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nature Geoscience 8, 594–600.
Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Lowfrequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature, 442, 188 – 191, doi:10.1038/nature04931.
Shelly, D. R., G. C. Beroza, and S. Ide (2007), Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan, Geochem. Geophys. Geosyst., 8, Q10014, doi:10.1029/ 2007GC001640.
Shelly, D. R., G. C. Beroza, and S. Ide (2007), Non-volcanic tremor and low-frequency earthquake swarms, Nature, 446,305 – 307, doi:10.1038/nature05666.
Shin, T. C., C. H. Chang, H. C. Pu*, H. W. Lin, and P. L. Leu, 2013: The Geophysical Database Management System in Taiwan. Terr. Atmos. Ocean. Sci., 24, 11-18, doi: 10.3319/TAO.2012.09.20.01(T)
Thomas, A.M., R.M. Nadeau R. Bu¨rgmann (2009) Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault, Nature, 462, 1048-1051; doi:10.1038/nature08654
Vidale, J. E. & Houston, H. (2012), Slow slip: A new kind of earthquake. Phys. Today, 65, 38–43.
Wang, Y. J., K. F. Ma, F. Mouthereau, and D. Eberhart-Phillips (2010), Three-dimensional Qp- and Qs-tomography beneath Taiwan orogenic belt: Implications for tectonic and thermal structure, Geophys. J. Int., 180(2), 891–910, doi:10.1111/j.1365-246X.2009.04459.x.
Wech, A. G., C. M. Boese, T. A. Stern, and J. Townend (2012). Tectonic tremor and deep slow slip on the Alpine fault, Geophys. Res. Lett. 39, 10, doi: 10.1029/2012GL051751.
Wu, F.T., Kuo-Chen, H., McIntosh, K., (2014), Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. J. Asian Earth Sci. doi:10.1016/j.jseaes.2014.03.024.
Wu, Y. M., C. H. Chang, L. Zhao, J. B. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac (2007), Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, doi:10.1029/2007JB004983.
莊育菱,2012,台灣非火山長微震半自動化偵測系統,國立臺灣師範大學地球科學所碩士論文,共93頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top