(3.238.130.97) 您好!臺灣時間:2021/05/15 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃靜怡
研究生(外文):Huang, Jing-Yi
論文名稱:開發尼羅吳郭魚成長相關之數量性狀基因座標記
論文名稱(外文):Development of Quantitative Trait Locus Markers Associated With Body Growth in Nile Tilapia
指導教授:黃章文
指導教授(外文):Huang, Chang-Wen
口試委員:龔紘毅曾福生郭建賢黃章文
口試委員(外文):Gong, Hong-YiTseng, Fu-ShengKuo, Chien-HsienHuang, Chang-Wen
口試日期:2016-01-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:吳郭魚成長數量性狀基因座分子標記
外文關鍵詞:tilapiagrowthquantitative trait locimolecular marker
相關次數:
  • 被引用被引用:1
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
吳郭魚為全球高經濟性養殖魚種,環境適應力佳、繁殖力強、高產量及高存活率等優點,對於水產養殖選拔育種者來說,成長為一重要之經濟性狀。然而,魚隻成長之體表型變異涉及許多外在環境與內源性荷爾蒙因素之間的相互作用,屬一相當複雜之生物現象。此外,由於雌魚耗費能量於繁殖上,使得成長速度與體型皆較雄魚慢且小。早期利用雌性尼羅吳郭魚與雄性歐利亞吳郭魚之種間雜交可產生近全雄性子代,可保有尼羅吳郭魚成長快速且體型大及歐利亞抗寒的優點
。然而,頻繁的雜交導致漸滲雜交現象,使得單性苗比率已有逐年下降趨勢。因此優質吳郭魚選拔育種改良計畫已是台灣現今刻不容緩的首要任務。透過分子生物學的快速進展,高度多型性遺傳標記已被運用於確認不同吳郭魚品種及雜交家系親屬相關數量性狀之關聯性。利用分子標記輔助種原庫選育之遺傳管理策略,為提升吳郭魚品種改良之重要關鍵,故本研究目的為開發尼羅吳郭魚成長相關之數量性狀基因座標記,利用第I型(prolactin 1-1、prolactin 1-2、gh、igf 1、ghr1、ghr2及progranulin)與第II型(UNH130、UNH146、UNH848、UNH868、UNH898、UNH925、UNH934、UNH1003及GM180)微衛星標記分析尼羅吳郭魚種內雜交(NT1×NT2)之多樣性,於親代發現6個微衛星標記具有差異且於子代族群具有多樣性,可追朔親代傳遞給子代的基因型。遺傳多樣性分析結果,平均觀測雜合度為0.92±0.17,平均預期雜合度為0.60±0.12,平均多態性訊息含量為0.60±0.12,平均固定指數為-0.55±0.21。利用Duncan檢定法對基因型之多重比較結果發現,prolactin 1-2、progranulin及UNH130標記與體重有顯著相關(p<0.01)。進一步於已利用粒線體DNA D-loop PCR-RFLP(HinfI、RsaI、TaqαI)與微衛星標記輔助種別(UNH155、UNH172、UNH773)與性別(ARO114、ARO195、ARO121)鑑定之市售吳郭魚族群中,進行六個月成長試驗分析,相似之試驗結果可獲得驗證。利用GH/IGF-1內分泌系統調節成長相關之gh、igf1、ghr1、ghr2及progranulin等基因標記分析市售吳郭魚不同成長性狀個體之基因表現量結果發現,成長快速組個體腦組織之gh基因表現量高於緩慢組,而於腦與鰓弓組織中皆發現,成長快速組之progranulin基因表現量高於緩慢組。於兩試驗族群之SSR結果發現,prolactin 1-2標記之BB、progranulin標記之BC、UNH130標記之AA、UNH848標記之BC及UNH925標記之CE為成長快速之基因型。本研究開發出可供吳郭魚成長家系選拔育種之數量性狀基因座標記,期望能做為產業評估與追蹤種緣系譜遺傳多型性之指標,除可避免基因窄化所造成之近親衰退外,亦能提高成長性狀改良之篩選效益,未來可提供業者建構完整產銷履歷及品牌認證之科學化管理,為水產養殖產業注入新元素。


Tilapia is the high economically important as food fish species for aquaculture in the world. It has good environmental resilience, strong reproductive capacity, high yield and high survival advantages. Growth trait is an important economic characteristic of selective breeding for aquaculture breeders. However, the phenotypic variation of the normal somatic growth of fish is a remarkably complicated biological phenomenon that involves interactions between external factors and endogenous hormonal factors. In addition, the female fish often consume energy used for breeding, and the growth rates and body size were slower and smaller than males. The use of interspecific hybridization between female Nile tilapia (Oreochromis niloticus) and male Blue tilapia (Oreochromis aureus) are available to product high percentage of male offspring, and retain the advantages of fast-growing, large size, and cold tolerance. However, the interspecific hybridization may lead to the introgression of genes, and the proportion of unisexual seedling has been declining trend. At present, selective breeding for the genetic improvement of quality-based tilapia is an urgent task in Taiwan. Highly polymorphic genetic markers have been used to identify association between markers and quantitative traits related with family relationships in different tilapia species and their hybrids. Genetics and brood-stock management strategies of molecular marker-assisted selection and breeding are important for promoting improved varieties of seeds of tilapia species. The purpose of present study was to develop the quantitative trait locus markers associated with body growth in Nile tilapia. Two strains (NT1 and NT2) of healthy Nile tilapia were bred in conserved stocks at NTOU. The type I (prolactin 1-1, prolactin 1-2, gh, igf1, ghr1, ghr2 and progranulin) and Type II (UNH130, UNH146, UNH848, UNH868, UNH898, UNH925, UNH934, UNH1003, and GM180) microsatellite markers were employed to assess the genotypic polymorphism and to evaluate the growth performance of F1 hybrids from the intraspecies cross family of Nile tilapia. The analysis results of genetic diversity shown that the mean observed heterozygosity was 0.92 ± 0.17, average expected heterozygosity was 0.60 ± 0.12, the average polymorphic information content was 0.60 ± 0.12, and average fixed index was -0.55 ± 0.21. Duncan assay to genotype multiple comparison results shown that, prolactin 1-2, progranulin, and UNH130 loci were significantly associated with body weight (p<0.01). Further subdivided to have used mitochondrial DNA D-loop PCR-RFLP (HinfI, RsaI, TaqαI) and microsatellite markers for species identification (UNH155, UNH172, UNH773) and sexing (ARO114, ARO195, ARO121) in the commercially tilapia population, and the similar results were obtained and verified during the six months of the growing experimental analysis. The GH/IGF-1 endocrine system regulate growth-related genes of gh, igf1, ghr1, ghr2, and progranulin were selected to assess gene expression in different growth trait individuals of commercial tilapia population. The result showed that the gh in brain and progranulin in gill arch were greater expression in fast group than in slow group. Similar results of SSR analysis were found that the BB type of prolactin 1-2, BC type of progranulin, AA type of UNH130, BC type of UNH848, and CE type of UNH925 showed the least suggestive correlations with body weight. The results of the present study suggested that the developed quantitative trait locus markers could be applied to family selection and breeding on the growth traits of tilapia. The technology platform could be developed into an industrial standard for the assessment and evaluation of genetic diversity and to define a marker assisted traceability system for tracing the pedigree to manage the brood-stock resource. It could be not only avoided the inbreeding depression caused by excessive narrowing of the gene pool, but also increased the benefit of selecting for genetic improvement of growth traits. It will provide the industry to build the scientific management of complete traceability and branding certification, and to create an entirely new approach to productivity and competitive advantage in the future.
誌謝 I
中文摘要 II
Abstract III
目錄 V
圖次 VIII
表次 IX
壹、前言 1
一、吳郭魚養殖概況 1
(一)吳郭魚之介紹 1
(二)臺灣吳郭魚養殖 1
(三)單性吳郭魚 2
二、分子育種的發展與應用 3
三、分子標記概述 3
四、標記輔助選育之應用 5
(一)成長性狀鑑定 5
(二)種別鑑定 7
(三)性別鑑定 7
(四)即時定量聚合酶連鎖反應之功能性基因分析 8
五、研究目的 9
貳、材料與方法 10
一、試驗材料 10
(一)生物化學藥品 10
(二)儀器設備 10
(三)試驗生物 10
(四)試驗環境 11
二、試驗流程 12
三、試驗分析引子 13
四、試驗方法 16
(一)基因組DNA萃取 16
(二)引子設計 16
(三)標記基因型判讀與分析 17
(四)種別鑑定與性別分析 18
(五)功能性基因表現之即時定量聚合酶連鎖反應分析 19
參、結果 21
一、尼羅吳郭魚種內雜交(NT1×NT2)家系親代與子代之遺傳多樣性分析
21
二、尼羅吳郭魚種內雜交(NT1×NT2)家系子代之成長性狀分析 21
三、尼羅吳郭魚種內雜交(NT1×NT2)家系子代之成長相關基因型分析 22
(一)第一型微衛星標記與體重相關性分析 22
(二)第二型微衛星標記與體重相關性分析 22
(三)微衛星標記組合與成長性狀相關性分析 23
四、市售吳郭魚族群之成長試驗分析 23
五、市售吳郭魚族群之種別與性別分析 23
(一)粒線體DNA D-loop PCR-RFLP分析結果 23
(二)微衛星標記之鑑種與性別分析結果 24
六、市售吳郭魚族群之功能性基因分析 24
七、市售吳郭魚族群之成長相關基因型分析 24
(一)市售吳郭魚族群之遺傳多樣性分析 24
(二)市售吳郭魚族群之成長相關基因型分析 25
八、尼羅吳郭魚種內雜交(NT1×NT2)與市售吳郭魚族群成長相關基因型
之比較
26
肆、討論 27
一、尼羅吳郭魚與市售吳郭魚族群之遺傳多樣性 27
二、DNA遺傳標記輔助吳郭魚族群種緣與性別鑑定 28
三、吳郭魚功能性基因表現之基因型與成長性狀相關性 28
伍、結論 31
陸、參考文獻 32
附錄 68



朱鴻鈞、陳葦芋、陳政忻。2009。台灣鯛產業概況及趨勢。農業生技產業季刊,19:16-23。
李武忠。1989。吳郭魚飼育與營養需求探討。飼料營養雜誌。89:94-103。
汪澤宏。2007。即時聚合酶反應(real-time PCR)在植物病蟲害檢測上之應用。行政院農委會農政與農情。181。
林天送。2009。複製又複製PCR的發明。科學發展。437:68-70。
胡興華。1997。吳郭魚傳奇。行政院農委會漁業署。漁業推廣,128:36-42。
徐雅各。2005。台灣鯛的崛起。科學發展,385:7-11。
張格銓,劉富光。2012。單性吳郭魚苗品質之鑑定。水試專訊,37:6-8。
張格銓、張湧泉、劉富光。2008。分子標記篩選技術於水產養殖之應用。農業生技產業季刊,15:30-33。
張格銓、劉富光。2008。影響尼羅吳郭魚性別機制的因子。行政院農委會水產試驗所電子報。
張格銓。2013。赴以色列研習吳郭魚遺傳育種心得報告。水試專訊,41:28-31。
郭迺鋒、熊漢琳、鄭國強、梁益誠。2012。資料分析:SPSS軟體之應用。
楊甦牧。2014。分子標記輔助尼羅吳郭魚品系鑑定及成長標記基因型分析之研究。碩士論文。國立台灣海洋大學水產養殖學系。
廖嘉瑄。2007。轉基因斑馬魚肌肉專一性表現PGRN基因導致肌肉細胞肥大之分子機制研究。碩士論文。國立台灣大學微生物與生化學研究所。
劉富光、張湧泉、陳榮華、吳純衡、蔡慧君、高淑雲。2008。吳郭魚168。行政院農業委員會水產試驗所特刊第10號。
劉富光。2014。台灣鯛產業現況與永續發展策略。水試專訊,48:20-24。
Agnèse JF, Adépo-Gourène B, Abban EK, Fermon Y. 1997. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, cichlidae). Heredity. 79:88–96.
Aksakal E, Ceyhun SB, Erdoğan O, Ekinci D. 2010. Acute and long-term genotoxicity of deltamethrin to insulin-like growth factors and growth hormone in rainbow trout. Comp Biochem Physiol C Biochem Mol Biol. 152:451-455.
Appleyard SA, Renwick JM, Mather PB. 2001. Individual heterozygosity levels and relative growth performance in Oreochromis niloticus cultured under Fijian conditions. Aquac Res. 32:287-296.
Baldisserotto B, Martos-Sitcha JA, Menezes CC, Toni C, Prati RL, Garcia LO, Salbego J, Mancera JM, Martínez-Rodrí-guez G. 2014. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquat Toxicol. 152:341-352.
Beardmore J, Mair G, Lewis R. 2001. Mono-sex male production in finfish as exemplified by tilapia: applications, problems and prospects. Aquaculture. 197:283-301.
Beauloye V, Ketelslegers JM, Moreau B, Thissen JP. 1999. Dexamethasone inhibits both growth hormone (GH)-induction of insulin-like growth factor-I (IGF-1) mRNA and GH receptor (GHR) mRNA levels in rat primary cultured hepatocytes. Growth Horm IGF Res.9:205-211.
Bernatchez L, Danzmann RG. 1993. Congruence in control region sequence and restriction site variation in mitochondrial DNA of brook charr (Salvelinus fontinalis Mitchill). Mol Biol Evol. 10:1002-1014.
Bezault E, Rognon X, Gharbi K, Baroiller JF, Chevassus B. 2012. Microsatellites cross-species amplification across some African Cichlids. Int J Evol Biol. 1-7.
Biga PR, Meyer J. 2009. Growth hormone differentially regulates growth and growth-related gene expression in closely related fish species. Comp Biochem Physiol A Mol Integr Physiol. 154:465–473.
Bolton JP, Collie NL, Kawauchi H, Hirano T. 1987. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J Endocrinol. 112:63-68.
Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32:314-331.
Butler AA, LeRoith D. 2001. Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinol. 142:1685–1688.
Chen MHC, Li YH, Chang Y, Hu SY, Gong HY, Lin GH, Chen TT, Wu JL. 2007. Co-induction of hepatic IGF-1 and progranulin mRNA by growth hormone in tilapia, Oreochomis mossambiccus. Gen Comp Endocrinol. 150:212–218.
Cheng CH, Yang FF, Liao SA, Miao YT, Ye CX, Wang AL. 2015. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus). Fish Physiol Biochem. 41:495-507.
Cnaani A, Hallerman EM, Rona M, Wellera JI, Indelman M, Kashi Y, Gall G, Hulata G. 2003. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture. 223:117-128.
Cnaani A, Lee BY, Zilberman N, Ozouf-Costaz C. 2008. Genetics of sex determination in Tilapiine species. Sex Dev. 2:43-54.
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. 142:169-196.
Contreras AJ, Boswell B, Downs KP, Pasquali A, Walter RB. 2014. Cortisol release in response to UVB exposure in Xiphophorus fish. Comp Biochem Physiol C Biochem Mol Biol. 163:95-101.
Dekkers JCM. 2004. Commercial application of marker and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 82:313-328.
Deng L, Zhang WM, Lin HR, Cheng CHK. 2004. Effects of food deprivation on expression of growth hormone receptor and proximate composition in liver of black sea bream (Acanthopagrus schlegeli). Comp Biochem Physiol B. 137:421-432.
Duan C, Ren H, Gao S. 2010. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol. 167:344-351.
Dutta S, Biswas S, Mukherjee K, Chakrabarty U, Mallik A, Mandal N. 2014. Identification of RAPD-SCAR marker linked to white spot syndrome virus resistance in populations of giant black tiger shrimp, Penaeus monodon Fabricius. J Fish Dis. 37:471-480.
Elango A, Shepherd B, Chen TT. 2006. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol. 145:116-127.
Eshel O, Shirak A, Weller JI, Hulata G, Ron M. 2012. Linkage and physical mapping of sex region on LG23 of Nile tilapia (Oreochromis niloticus). G3(Bethesda). 2:35-42.
Eshel O, Shirak A, Weller JI, Slossman T, Hulata G, Cnaani A, Ron M. 2010. Fine-mapping of a locus on linkage group 23 for sex determination in Nile Tilapia (Oreochromis niloticus). Anim Genet. 42:222-224.
FAO. 2014. State of world fisheries and aquaculture 2015. Fisheries and aquaculture department, Rome, FAO.
Fox BK, Breves JP, Davis LK, Pierce AL, Hirano T, Grau EG. 2010. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding:importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia. Gen Comp Endocrinol. 166:573-580.
Fuh G, Mulkerrin MG, McFarland N, Brochier M, Bourell JH, Light DR, Welles JA. 1990. The human growth hormone receptor. Secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domains. J Biol Chem.265:3111-3115.
Green H, Morikawa M, Nixon T. 1985. A dual effector theory of growth-hormone action. Differentiation. 29:195-195.
Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ. 2008. Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics. 9:80.
He Z, Bateman A. 2003. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med. 81:600-612.
Herrington J, Carter-Su C. 2001. Singnaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 12:252-257.
Huang CW, Li YH, Hu SY, Chi JR, Lin GH, Lin CC, Gong HY, Chen JY, Chen RH, Chang SJ, Liu FG, Wu JL. 2012. Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus). J Anim Sci. 90:4266-4279.
Hutchings JA, Frase DJ. 2007. The nature of fisheries and farming induced evolution. Mol Ecol. 17:294-313.
Jiao B, Huang X, Chan CB, Zhang L, Wang D, Cheng CHK. 2006. The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream. J Mol Endocrinol. 36:23-40.
Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B. 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics. 148: 1225-1232.
Le Gac F, Blaise O, Forstier A, Le Bail PY, Loir M, Mourot B, Weil C. 1993. Growth hormone (GH) and reproduction: a review. Fish Physiol Biochem. 11:219-232.
Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD. 2005. A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics. 170:237-244.
Li SF, Tang SJ, Cai WQ. 2010. RAPD-SCAR Markers for genetically improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and their application in strain identification. Dongwuxue Yanjiu. 31:147-153.
Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ, Yue GH. 2013. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus × Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics. 14:58.
Liu Z, Karsi A, Dunham RA. 1999. Development of polymorphic EST markers suitable for genetic linkage mapping of Catfish. Mar Biotechnol. 437-447.
Liu ZJ, Cordes JF. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 238:1-37.
Lopata RK, Auerswald L, Cook P. 2006. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus. Aquaculture. 261:678-687.
Ma X, Liu X, Zhang Y, Zhu P, Ye W, Lin H. 2007. Two growth hormone receptors in Nile tilapia (Oreochromis niloticus): molecular characterization, tissue distribution and expression profiles in the gonad during the reproductive cycle. Comp Biochem Physiol B Biochem Mol Biol. 147:325–339.
Mendel G. 1865. Experiments in plant hybridization. für das Jahr 3-47.
Mingarro M, Vega-Rubin de Celis S, Astola A, Pendon C, Valdivia MM, Perez-Sanchez J. 2002. Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): the growth hormone and somatolactin paradigm. Gen Comp Endocrinol. 128:102-111.
Monteiro SM, dos Santos NM, Calejo M, Fontainhas-Fernandes A, Sousa M. 2009. Copper toxicity in gills of the teleost fish, Oreochromis niloticus: effects in apoptosis induction and cell proliferation. Aquat Toxicol. 94: 219–228.
Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 51 Pt 1:263-273.
Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89:583-590.
O'Brien SJ. 1991. Mammalian genome mapping: lessons and prospects. Curr Opin Genet Dev. 105-111.
Pan G, Yang J. 2010. Analysis of microsatellite DNA markers reveals no genetic differentiation. Int J Biol Sci. 6:827-833.
Paran I, Michelmore RW. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet. 85:985-933.
Pérez-Sánchez J, Le Bail PY. 1999. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture. 177:117-128.
Phumyu N, Boonanuntanasarn S, Jangpria A, Yoshizaki G, Na-Nakorn U. 2012. Pubertal effects of 17-methyltestosterone on GH-IGF-related genes of the hypothalamic- pituitary-liver-gonadal axis and other biological parameters in male, female and sex-reversed Nile tilapia. Gen Comp Endocrinol. 1;177:278-92
Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM. 2005. Growth rate correlates to individual heterozygosity in European eel, Anguilla anguilla L. Evolution. 59:189-199.
Reindl KM, Sheridan MA. 2012. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol Part A. 163:231-245.
Reinecke M, Schmid A, Ermatinger R, LoYng-Cueni D. 1997. Insulinlike growth factor I in the teleost Oreochromis mossambicus, the tilapia: gene sequence, tissue expression, and cellular localization. Endocrinol. 138:3613–3619.
Rentier-Delrue F, Swennen D, Philippart JC, Hoir CL, Lion M, Benrubi O, Martial JA. 1989. Tilapia growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA. 8:271–278.
Richman NH, Zaugg WS. 1987. Effects of cortisol and growth hormone on osmoregulation in pre- and desmoltified coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol. 65:189-198.
Rodgers BD, Weber GM, Sullivan CV, Levine MA. 2001. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinol. 142:1412–1418.
Sakamoto T, McCormick SD, Hirano T. 1993. Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem. 11:155-164.
Salamoto T, Shepherd BS, Madsen SS, Nishioka RS, Siharath K, Richman NH 3rd, Bern HA, Grau EG. 1997. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. Gen Comp Endocrinol. 106:95-101.
Sax K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus Vulgaris. Genetics. 8:552-560.
Scott AG, Valleojo RL, Weber GM, Shepherd BS, Silverstein JT, Rexroad CE. 2008. Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol Genomics. 32:380-392.
Shepherd BS, Sakamoto T, Nishioka RS, Richman NHIII, Mori I, Madsen SS, Chen TT, Hirano T, Bern HA, Grau EG. 1997. Somatotropic actions of the homologous growth hormone and prolactins in the euryhaline teleost, the tilapia, Oreochromis mossambicus. Proc Natl Acad Sci USA. 94:2068-2072.
Sinha AK, Diricx M, Chan LP, Liew HJ, Kumar K. 2012a. Expression pattern of potential biomarker genes related to growth, ion regulation and stress in response to ammonia exposure, food deprivation and excrise in common carp (Cyprinus carpio). Aquat Toxicol. 123:93-105.
Sinha AK, Liew HJ, Diricx M, Kumar V, Darras VM, Blust R, De Boeck G. 2012b. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). Aquat Toxicol. 114:153-164.
Soaresa MC, Cardoso SC, Grutter AS, Oliveira RF, Bshary R. 2014. Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception. Horm Behav. 66:346-350.
Soller M, Brody T, Genizi A. 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet. 47:35-39.
Streelman JT, Kocher TD. 2002. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics. 9:1-4.
Sukmanomon S, Kamonrat W, Poompuang S, Nguyen TTT, Bartley DM, May B, Na-Nakorn U. 2012. Genetic changes, intra- and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture. 324-325: 44-54.
Swingle HS. 1960. Comparative evaluation of two tilapias as pond fishes in Alabama. Trans Am Fish Soc. 89:142-148.
Tanamati F, da Silva SCC, Rodriguez MDPR, Schuroff GP, do Nascimento CS, Del Vesco Ap, Gasparino E. 2015. GHR and IGF-I gene expression and production characteristics associated with GH gene polymorphism in Nile tilapia. Aquaculture. 435:195-199.
Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463-6471.
Very NM, Kittilson JD, Klein SE, Sheridan MA. 2008. Somatostatin inhibits basal and growth hormone-stimulated hepatic insulin-like growth factor-I production. Mol Cell Endocrinol. 281:19-26.
Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.
Wang DG, Fan JB, Siao JC, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kiburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 280:1077-1082.
Wang X, Darus CJ, Xu BC, Kopchick JJ. 1996. Identification of growth hormone receptor (GHR) tyrosine residues required for GHR phosphorylation and JAK2 and STAT5 activation. Mol Endocrinol. 10:1249-1260.
Wang DS, Jiao B, Hu C, Huang X, Liu Z, Cheng CH. 2008. Discovery of a gonad-specific IGF subtype in teleost. Biochem Biophys Res Commun. 367:336–341.
Wargelius A, Fjelldal PG, Benedet S, Hansen T, Bjornsson BT, Nordgarden U. 2005. A peak in gh-receptor expression is associated with growth activation in Atlantic salmon vertebrae, while upregulation of igf-I receptor expression is related to increased bone density. Gen Comp Endocrinol. 142:163-168.
Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.
Wohlfarth GW, Wedekind H. 1991. The heredity of sex determination in tilapias. Aquaculture. 92:143-156.
Zhang Y, Jiang J, Kopchick JJ, Frank SL. 1999. Disulfide linkage of growth hormone (GH) receptors (GHR) reflects GH-induced GHR dimerization. Association of JAK2 with the GHR is enhanced by receptor dimerization. J Biol Chem. 274:33072-33084.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top