跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳國平
研究生(外文):Tran Quoc Binh
論文名稱:飼料中吳郭魚蛋白水解物和大豆蛋白水解物取代魚粉對點帶石斑魚成長之影響
論文名稱(外文):The effects of dietary tilapia protein hydrolysate and soy protein hydrolysate on the growth performances of orange-spotted grouper Epinephelus coioides
指導教授:沈士新沈士新引用關係
指導教授(外文):Sheen, Shyn-Shin
口試委員:朱建宏秦宗顯沈士新
口試委員(外文):Chu, Jen-HongChin, Tzong-SheanSheen, Shyn-Shin
口試日期:2016-05-20
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:44
中文關鍵詞:點帶石斑魚Epinephelus coioides水解魚蛋白水解大豆蛋白增重率
外文關鍵詞:orange-spotted grouperEpinephelus coioidestilapia protein hydrolysatesoy protein hydrolysateweight gain percentage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究探討以吳郭魚水解蛋白及水解大豆蛋白,添加及取代在飼料當中對點帶石斑成長與體組成之影響。
  第一個實驗當中,添加吳郭魚水解蛋白0、1、2、3、4、5%於飼料中,配製成6組等蛋白(46%)及等油脂(11%)之實驗飼料,魚粉、蝦粉及烏賊粉作為蛋白來源,每組實驗做三重複;實驗魚體初重1.26±0.01克;每日投餵三餐,投餵量為魚體體重的6%;實驗週期為8週。實驗結果顯示增重率在添加3%水解蛋魚白的處理組(2690.89%)顯著高於添加5%水解魚蛋白的處理組(1995.40%),而其他各組間沒有顯著差異;魚體肌肉組織粗蛋白、粗油脂、水分及灰分隨著飼料中水解魚蛋白添加量上升而有下降的趨勢。因此本實驗的結論為飼料中添加3%的水解魚蛋白對點帶石斑有最好的成長表現。
  第二個實驗當中,使用水解大豆蛋白取代飼料中0、5、10、15、20%的魚粉蛋白含量,配置成5組等蛋白(46%)及等油脂(13%)之實驗飼料,每組實驗做三重複;每缸7隻魚,初重為2.86±0.01克,實驗系統為循環水系統,每日投餵三餐,實驗為期6週。在成長實驗結束後,取代20SPH在體增重和每日特定成長率顯著低於其他處理組,而在飼料轉換率顯著高於其他處理組。魚體組織在粗蛋白、粗油脂、水灰份均無顯著差異。本實驗結論為水解大豆蛋白能作為石斑魚一良好蛋白質來源並能取代點帶石斑魚飼料中魚粉蛋白含量15%。

Two experiments were carried out to evaluate the effects of dietary tilapia protein hydrolysate (TH) and soy protein hydrolysate (SPH) on the growth performance of orange-spotted grouper Epinephelus coioides.
In the first experiment, six isonitrogenous (46%) and isolipidic (11%) diets were formulated to contain 0, 1, 2, 3, 4 and 5% tilapia protein hydrolysate. Fish meal, shrimp meal and squid meal were served as the protein sources. Triplicate groups of orange-spotted grouper (initial body weight, 1.26 ± 0.01 g) were fed six experimental diets (approximate 6% body weight) three times daily for 8 weeks. The weight gain percentages of fish fed treatment diets (1, 2, 3, 4 and 5% TH) were not significantly different from those of fish fed control diet (0% TH). However, the weight gain percentage of fish fed diet containing 3% TH was significantly higher (2690.89%) than that of fish fed diet containing 5% TH (1995.40%). The crude protein, crude lipid, moisture and ash of fish muscle tended to decrease with increasing dietary TH. Based on the experimental results, Epinephelus coioides fed diet supplemented with 3% tilapia protein hydrolysate (TH) had the best growth performance.
In the second experiment, five isonitrogenous and isolipidic diets (crude protein 46%, crude lipid 13%) were formulated to contain 0, 5, 10, 15 and 20% SPH to replace fish meal protein. Each diet was randomly assigned to triplicate tanks with 7 fish (initial weight 2.86±0.01 g) per tank in a circulating water system. Fish were fed three times daily for 6 weeks. At the end of the feeding trial, fish fed diet containing 20% SPH had the significantly lower weight gain percentage and specific growth rate than those fed other treatments. Feed conversion ratio of grouper fed 20SPH diet was significantly higher than that of grouper fed the other diets. Muscle proximate compositions of grouper showed no significantly different among dietary treatments. The soy protein hydrolysate appeared to be a good protein source for Epinephelus coioides and up to 15% SPH may be a preferable level for grouper diet without negative effects.

CHINESE ABSTRACT I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF TABLES V
1. INTRODUCTION 1
2. LITERATURE REVIEW 4
2.1. Orange-spotted grouper (Epinephelus coioides) 4
2.1.1. Biology 4
2.1.2. Protein and lipid requirements 4
2.2. Current status of aquaculture and fish meal 6
2.3. Alternative protein sources for fish feeds 8
2.3.1. Fish protein hydrolysate 9
2.3.2. Soy protein hydrolysate 12
2.4. Studies on the use of protein hydrolysate in grouper diets 14
3. MATERIALS AND METHODS 15
3.1. Experimental Diets 15
3.2. Feeding Trial 16
3.3. Proximate Analysis 17
3.3.1. Moisture 17
3.3.2. Ash 18
3.3.3. Crude protein 18
3.3.4. Crude lipid 19
3.3.5. Crude fiber 19
3.3.6. Gross energy 20
3.4. Data Calculation and Statistical Analysis 20
4. RESULTS 21
4.1. Experiment I 21
4.2. Experiment II 21
5. DISCUSSION 23
5.1. Experiment I 23
5.2. Experiment II 25
6. CONCLUSION 27
REFERENCES 28

Adelizi, P.D., Rosati, R.R., Warner, K., Wu, Y.V., Muench, T.R., White, M.R., Brown, P.B., 1998. Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss. Aquacult. Nutr. 4, 255–262.
Aksnes, A., Hope, B., Albrektsen, S., 2006a. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. II: Flesh quality, absorption, retention and fillet levels of taurine and anserine. Aquaculture 261, 318-326.
Aksnes, A., Hope, B., Hostmark, O., Albrektsen, S., 2006b. Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture 261, 1102-1110.
AOAC (Association of Official Analytical Chemists), 1984. Official Methods of Analysis. 14th edn, AOAC Arlington, USA, 1141 pp.
Ayadi, F.Y., Rosentrater, K.A., Muthukumarappan, K., 2012. Alternative Protein Sources for Aquaculture Feeds. J. Aquacult. Feed Sci. Nutr. 4, 1-26.
Baldwin, C.C., Johnson, D., 1993. Phylogeny of the Epinephelinae (Teleostei: Serranidae). Bull. Mar. Sci. 52, 240–283.
Berge, G.M, Storebakken, T., 1996. Fish protein hydrolyzate in starter diets for Atlantic salmon Salmo salar fry. Aquaculture 145, 205–212.
Bernhart, F.W., Tomarelli, R.M., 1966. A salt mixture supplying the National Research Council estimates of mineral requirements of the rat. J. Nutr. 89, 495-500.
Boonyaratpalin, M., 1997. Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 151, 283-313.
Chen, H.Y., 2001. Nutritional studies and feed development of the Epinephelus groupers in Taiwan. In: Liao, I.C., Baker, J., (Eds.), TFRI Conf. Proc. 4, Aquaculture and Fisheries Resources Management, Taiwan Fisheries Research Institute, Keelung, Taiwan, pp. 169–172.
Chen, S,C., Chuang, C.T., Hu, S.H., Nan, F.H., 2007. Competitiveness and supply chain management study on Taiwan Grouper Industry. Proceedings of the International Workshop on Innovative Technologies for Eco-Friendly Fish Farm Management and Production of Safe Aquaculture Foods. December 04-08, 2006, Bali, Indonesia, pp. 79-86.
Cho, C.Y., Cowey, C., Watanabe, T., 1985. Finfish nutrition in Asia: Methodological approaches to research and development. Ottawa, Ont., IDRC, 154 pp.
Clemente, A., 2000. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Tech. 11, 254–262.
Dabrowski, K., Guderley, H., 2002. Intermediary metabolism. In: Halver, J.E., Hardy, R.W., (Eds.), Fish Nutrition (3rd edn), Academic Press, New York, pp. 309-365.
Deng, J.M., Mai, K.S., Ai, Q.H., Zhang, W.B., Wang, X.J., Xu, W., Liufu, Z.G., 2006. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 258, 503–513.
Dias, J., Alvarez, M.J., Arzel, J., Corraze, G., Diez, A., Bautista, J.M., Kaushik, S.J., 2005. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp. Biochem. Phys. 142 (A), 19-31.
Elangovan, A., Shim, K.F., 2000. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 189, 133–144.
Espe, M., Haaland, H., Njaa, L.R., 1992. Autolyzed fish silage as a feed ingredient for Atlantic salmon (Salmo salar). Comp. Biochem. Phys. 103 (A), 369-372.
Espe, M., Sveier, H., Hogoy, I., Lied, E., 1999. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture 174, 119-137.
FAO, 2006. State of world aquaculture 2006, Rome. 134 pp.
FAO, 2014. The State of World Fisheries and Aquaculture 2014. Rome, 223 pp.
Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 266, 497-509.
Fournier, V., Huelvan, C., Desbruyeres, E., 2004. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture 236, 451–465.
Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227.
Geiger, E., 1947. Experiments with delayed supplementation of incomplete amino acid mixtures. J. Nutr. 34, 97–111.
Gildberg, A., 1994. Enzymic processing of marine raw materials. Process Biochem. 28, 1–15.
Glencross, B.D, Boot,h M., Allan, G.L., 2007. A feed is only as good as its ingredients – a review of ingredient evaluation for aquaculture feeds. Aquacult. Nutr. 13, 17–34.
Haard, N.F., 2001. Enzymic modification of proteins in food systems. In: Sikorski Z.E., (Ed.), The Chemical and Functional Properties of Food Proteins, Technomic Publishing Co., Inc., Lancaster, pp. 155-190.
Hall, G.M., 2011. Fishmeal production and sustainability. In: Hall, G.M., (Ed.), Fish Processing - Sustainability and New Opportunities, Blackwell Publishing Ltd., UK, pp. 207-235.
Hardy, R.W., Tacon, A.G.J., 2002. Fish meal: historical uses, production trends and future outlook for supplies. In: Stickney, R.R., MacVey, J.P., (Eds.), Responsible Marine Aquaculture, CABI Publishing, New York, pp. 311–325.
Heemstra, P.C., Randall, J.E., 1993. Groupers of the world (Family Serranidae, Subfamily Epinephelinae). An annoted and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Species Catalogue, FAO Fisheries Synopsis no. 125, Rome, 382 pp.
Hertrampf, J.W., Piedad-Pascual, F., 2000. Handbook on ingredients for aquaculture feeds. Kluwer Academic Publishers, Netherlands, 573 pp.
Hevrøy, E.M., Espe, M., Waagbø, R., Sandnes, K., Ruud, M., Hemre, G.I., 2005. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquacult. Nutr. 11, 301-313.
Hrčková, M., Rusňáková, M., Zemanovič, J., 2001. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech J. Food Sci. 20, 7–14.
Johannsdottir, J., Heimisdottir, H.L., Hakonardottir, K., Hrolfsdottir, L., Steinarsson, A., Imsland, A.K., Thorarensen, H., Bergsson, A.B., Bjornsdottir, R., 2014. Improved performance of Atlantic cod (Gadus morhua L.) larvae following enhancement of live feed using a fish protein hydrolysate. Aquacult. Nutr. 20, 314-323.
Kaushik, S.J., Coves, D., Dutto, G., Blanc, D., 2004. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230, 391– 404.
Khosravi, S., Bui, H.T.D., Rahimnejad, S., Herault, M., Fournier, V., Kim, S.S., Jeong, J.B., Lee, K.J., 2015. Dietary supplementation of marine protein hydrolysates in fish-meal based diets for red sea bream (Pagrus major) and olive flounder (Paralichthys olivaceus). Aquaculture 435, 371-376.
Kolkovski, S., Tandler, A., 2000. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquacult. Nutr. 6,11-15.
Kristinsson, H. G., Rasco, B. A., 2000. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agri. Food Chem. 48, 657–666.
Li, P.Y., Wang, J.Y., Song, Z.D., Zhang, L.M., Zhang, H., Li, X.X., Pan, Q., 2015. Evaluation of soy protein concentrate as a substitute for fishmeal in diets for juvenile starry flounder (Platichthys stellatus). Aquaculture 448, 578-585.
Liu, H.I., Chiou, P.P., Gong, H.Y., Chou, H.Y., 2015. Cloning of the Major Capsid Protein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and Preliminary Evaluation of a Recombinant MCP Vaccine against TGIV. Int. J. Mol. Sci. 16, 28647–28656. doi:10.3390/ijms161226118.
Luo, Z., Liu, Y.J., Mai, K.S., Tian, L.X., 2005. Advances in the study on nutrient requirements of grouper (Epinephelus sp.): a review. J. Ocean Univ. China 4, 93–98.
Lupatsch, I., Kissil, G.Wm., 2005. Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). Aquaculture 248, 83–95.
Mach, D.T.N., Nguyen, M.D., Nortvedt, R., 2010. Effects on digestibility and growth of juvenile cobia (Rachycentron canadum) fed fish or crab silage protein. Aquacult. Nutr. 16, 305-312.
Mach, D.T.N., Nortvedt, R., 2011. Free amino acid distribution in plasma and liver of juvenile cobia (Rachycentron canadum) fed increased levels of lizardfish silage. Aquacult. Nutr. 17, 644-656.
Mamauaga, R.E.P., Koshio, S., Ishikawa, M., Yokoyama, S., Gao, J., Nguyen, B.T., Ragaza, J.A., 2011. Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and body composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 321, 252–258.
Masumoto, T., Ruchimat, T., Ito, Y., Hosokawa, H., Shimeno, S., 1996. Amino acid availability values for several protein sources for yellowtail (Seriola quinqueradiata). Aquaculture 146, 109– 119.
Millamena, O.M., Golez, N.V., 2001. Evaluation of processed meat solubles as replacement for fish meal in diet for juvenile grouper Epinephelus coioides (Hamilton). Aquacult. Res. 32 (Supplement s1), 281- 287.
NRC, 2011. Nutrient requirements of fish and shrimp. National Academy Press, Washington DC, 376 pp.
Oliva-Teles, A., Luis Cerqueira, A., Goncalves, P., 1999. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture 179, 195–201.
Pezzato, L.E., Barros, M.M., Fracalossi, D.M., Cyrino, J.E.P., 2005. Nutricao de peixes. In: Cyrino, J.E.P., Urbinati, E.C., Fracalossi, D.M., Castagnolli, N., (Eds.), Topicos Especiais em Piscicultura de Agua Doce Tropical Intensiva, TecArt, Sao Paulo, pp. 75–169.
Pierre, S., Gaillard, S., Prevot-Dalvise, N., Aubert, J., Rostaing-Capaillon, O., Leung-Tack, D., Grillasca, J.P., 2008. Grouper aquaculture: Asian success and Mediterranean trials. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 297-308.
Plascencia-Jatomea, M., Olvera-Novoa, M.A., Arredondo-Figueroa, J.L., Hall, G.M., Shirai, K., 2002. Feasibility of fishmeal replacement by shrimp head silage protein hydrolysate in Nile tilapia (Oreochromis niloticus L.) diets. J. Sci. Food Agr. 82, 753-759.
Ramasubburayan, R., Iyapparaj, P., Subhashini, K.J., Chandran, M.N., Palavesam, A., Immanuel, G., 2013. Characterization and nutritional quality of formic acid silage developed from marine fishery waste and their potential utilization as feed stuff for common carp Cyprinus carpio fingerlings. Turk. J. Fish. Aquat. Sci. 13, 281- 289.
Rana, K.J., Siriwardena, S., Hasan, M.R., 2009. Impact of rising feed ingredient prices on aquafeeds and aquaculture production. FAO Fisheries and Aquaculture Technical Paper, No. 541, Rome, FAO, 63 pp.
Refstie, S., Olli, J.J., Standal, H., 2004. Feed intake, growth, and protein utilization by post-molt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239, 331-349.
Regost, C., Arzel, J., Kaushik, S.J., 1999. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima). Aquaculture 180, 99–117.
Robaina, L., Corraze, G., Aguirre, P., Blanc, D., Melcion, J.P., Kaushik, S., 1999. Digestibility, postprandial ammonia excretion and selected plasma metabolites in European sea bass (Dicentrarchus labrax) fed pelleted or extruded diets with or without wheat gluten. Aquaculture 179, 45– 56.
Rønnestad, I., Conceição, L.E.C., Aragão, C., Dinis, M.T., 2000. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). J. Nutr. 130, 2809–2812.
Sargent, J.R., Tocher, D. R., Bell, J.G., 2002. The lipids. In: Halver, J. E., Hardy, R.W., (Eds.), Fish Nutrition (3rd edn), Academic Press, New York, pp. 181-257.
Seng, L.T., 1998. Grouper culture. In: Silva, S.S.D., (Ed.), Tropical mariculture, Academic Press, London, pp. 423-448.
Shapawi, R., Ebi, I., Yong, A., Chong, M., Chee, L.K., Sade, A., 2013. Soybean meal as a source of protein in formulated diets for tiger grouper, Epinephelus fuscoguttatus juvenile. Part II: Improving diet performances with phytase supplementation. Agri. Sci. 4, 19-24.
Sheen, S.S., Chen, C.T., Ridwanudin, A., 2014. The Effect of Partial Replacement of Fish Meal Protein by Dietary Hydrolyzed Fish Protein Concentrate on the Growth Performance of Orange-Spotted Grouper Epinephelus coioides. J. Aquacult. Mar. Biol. 1: 00006. DOI: 10.15406/ jamb.2014.01.00006.
Shiau, S. Y., 2008. Use of Animal by-Products in Crustacean Diets. In: Lee, C.S, Lim, C., Webster, C. D., (Eds.), Alternative Protein Sources in Aquaculture Diets, The Haworth Press, Taylor and Francis, Group New York, USA, pp. 133-161.
Slizyte, R., Mozuraityte, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., Rustad, T., 2009. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochem. 44, 668–677.
Song, Z., Li, H., Wang, J., Li, P., Sun, Y., Zhang, L., 2014. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture 426–427, 96-104.
Srichanun, M., Tantikitti, C., Kortner, T.M., Krogdahl, Å., Chotikachinda, R., 2014. Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass (Lates calcarifer Bloch) larvae. Aquaculture 428-429, 195-202.
Storebakken, T., Refstie, S., Ruyter, B., 2000. Soy products as fat and protein sources in fish feeds for intensive aquaculture. In: Drackley, J.K., (Ed.), Soy in Animal Nutrition, Fed. Anim. Sci. Sco., Savoy, IL, USA, pp. 127–170.
Sveier, H., Kvamme, B.O., Raae, A.J., 2001. Growth and protein utilization in Atlantic salmon (Salmo salar L.) given a protease inhibitor in the diet. Aquacult. Nutr. 7, 255-264.
Tacon, A.G.J., Metian, M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158.
Teshima, S.I., Koshio, S., Ishikawa, M., Alam, M.S., Hernandez, L.H.H., 2004. Effects of protein and lipid sources on the growth and survival of red sea bream Pagrus major and Japanese flounder Paralichthys olivaceus receiving micro-bound diets during larval and early juvenile stage. Aquacult. Nutr. 10, 279–287.
Torstensen, B.E., Espe, M., Sanden, M., Stubhaug, I., Waagbø, R., Hemre, G.I., Fontanillas, R., Nordgarden, U., Hevrøy, E.M., Olsvik, P., Berntssen, M.H.G., 2008. Novel production of Atlantic salmon (Salmo salar L.) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285, 193-200.
Trushenski, J. T., Kasper, C. S., Kohler, C. C., 2006. Challenges and opportunities in finfish nutrition. N. Am. J. Aquacult. 68, 122 – 140.
Tuan, L.A., Williams, K.C., 2007. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture 267, 129–138.
Usman, Rachmansyah, Laining, A., Ahmad, T., Williams, K.C., 2005. Optimum dietary protein and lipid specifications for grow-out of humpback grouper Cromileptes altivelis (Valenciennes). Aquacult. Res. 36, 1285–1292.
Williams, K.C., 2009. A review of feeding practices and nutritional requirements of postlarval groupers. Aquaculture 292, 141-152.
Williams, K.C., Irvin, S., Barclay, M., 2004. Polka dot grouper Cromileptes altivelis fingerlings require high protein and moderate lipid diets for optimal growth and nutrient retention. Aquacult. Nutr. 10, 125–134.
Wilson, R.P., 2002. Amino acids and proteins. In: Halver, J.E., Hardy, R.W., (Eds.), Fish nutrition (3rd edn), Academic Press, USA, pp. 143-179.
Young, B.C., Yeh, S.P., Chung, R.H., Lee, P.P., 2015. The current status of grouper culture operations and cost analysis of the industry in Taiwan. J. J. Aquacult. Res. 1: 014.
Zheng, K., Liang, M., Yao, H., Wang, J., Chang, Q., 2013. Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquacult. Res. 44, 895–902.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊