跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張佳瑜
研究生(外文):Chang, Chia-Yu
論文名稱:飼料中添加雨生紅球藻對眼斑海葵魚活存、成長及呈色之影響
論文名稱(外文):Effect of Dietary Supplementation with Haematococcus pluvialis on Survival, Growth and Pigmentation of Amphiprion ocellaris
指導教授:冉繁華冉繁華引用關係
指導教授(外文):Nan, Fan-Hua
口試委員:古鎮鈞李孟洲冉繁華
口試日期:2016-06-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:雨生紅球藻眼斑海葵魚蝦紅素增豔
外文關鍵詞:Haematococcus pluvialisAmphiprion ocellarisastaxanthinpigmentation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討飼料中添加不同濃度雨生紅球藻 (Haematococcus pluvialis) 藻粉及萃取之蝦紅素,對人工繁殖眼斑海葵魚 (Amphiprion ocellaris) 活存、成長及體表呈色之影響。實驗分成三個部分,首先大量培養雨生紅球藻,製作成凍乾藻粉後,以最適化學萃取方法進行蝦紅素萃取。分別在飼料中添加雨生紅球藻凍乾藻粉及萃取之蝦紅素,投餵眼斑海葵魚,觀察有無萃取處理之雨生紅球藻對眼斑海葵魚活存、成長及呈色影響,確定眼斑海葵魚可吸收雨生紅球藻萃取之蝦紅素。最後,以飼料中添加雨生紅球藻萃取之蝦紅素,觀察不同濃度對於眼斑海葵魚的活存、成長及呈色影響,與市售市售合成蝦紅素比較差異。
實驗一、探討商業水耕培養液─花寶 4 號對雨生紅球藻之最大成長生物量影響,並與 Jaworski’s medium (JM) 比較。雨生紅球藻粉以兩種萃取法,醋酸-DMSO 萃取法及 HCl-丙酮萃取法檢測雨生紅球藻粉破壁及萃取效果。結果顯示,花寶 4 號培養液濃度 10 mg/L、20 mg/L、40 mg/L 及 60 mg/L 皆對雨生紅球藻生物量有提高之影響,其中濃度 20 mg/L 及 60 mg/L,在短時間內有顯著生物量成長,濃度 40 mg/L 於培養第 26 天有最高生物量 1.16 ± 0.81 × 105 cells/mL。醋酸-DMSO 萃取法及 HCl-丙酮萃取法對雨生紅球藻之蝦紅素萃取量分別為 19.20 ± 0.49 mg/g cell 及 21.99 ± 0.52 mg/g cell,兩種萃取法進行葉綠素去除步驟之萃取量分別為 15.80 ± 0.98 mg/g cell 及 20.41 ± 0.52 mg/g cell。HCl-丙酮萃取法對於雨生紅球藻之蝦紅素萃取量較高,且萃取量不受葉綠素去除步驟之影響。
實驗二、探討飼料中添加雨生紅球藻粉,投餵 0.19 ± 0.05 g眼斑海葵魚,觀察 10 週後,記錄其活存、成長及呈色狀況,並與市售合成蝦紅素比較差異。結果顯示,投餵添加藻粉組別,其末重為 0.22 ~ 0.26 g,增重率為 18.86 ~ 30.56 %,飼料轉換率為 3.24 ~ 5.01,特殊成長率為 0.21 ~ 0.33 %,活存率為 84 ~ 98 %;餵食市售合成蝦紅素組,其末重為 0.23 g,增重率為 24.42 %,飼料轉換率為 4.28,特殊成長率為 0.27 %,活存率為 94 %,結果顯示,飼料中添加藻粉,對眼斑海葵魚的活存、成長及體表增豔無顯著效果。
接續實驗觀察 8 週,檢測雨生紅球藻萃取之蝦紅素,對眼斑海葵魚體表增豔觀察,結果顯示,投餵萃取蝦紅素,隨投餵濃度增加有顯著增豔效果,色彩指標 L* 值為 43.17 ~ 48.57,a* 值為 49.97 ~ 58.67,b* 值為 56.37 ~ 59.93,C* 值為 77.32 ~ 83.85,H* 值為 43.88 ~ 49.80。
實驗三、探討飼料中添加不同濃度雨生紅球藻萃取之蝦紅素,對眼斑海葵魚活存、成長及呈色觀察,並與市售合成蝦紅素比較差異。投餵萃取之蝦紅素 8 週,其末重為 0.36 ~ 0.39 g,增重率為 32.61 ~ 38.99 %,飼料轉換率為 2.10 ~ 2.46,特殊成長率為 0.35 ~ 0.41 %,活存率為 100 %。結果顯示,萃取之蝦紅素100 mg/kg 對眼斑海葵魚,有較佳增重率及飼料轉換率,添加量 200 mg/kg 有較佳的增豔效果。

The purpose of the experiment is to investigate the effect of dietary supplementation with microalgae Haematococcus pluvialis on survival, growth and pigmentation of Amphiprion ocellaris. The experiment was divided into three parts. First, Haematococcus pluvialis was cultured in a great amount, and was lyophilized into algae powder. Optimal extraction method was adopted to extract astaxanthin from Haematococcus pluvialis. Haematococcus pluvialis algae powder and extracted astaxanthin was added separately to the diets to feed Amphiprion ocellaris as to know whether dietary supplementation with either algae powder or extracted astaxanthin had effect on survival, growth and pigmentation. Amphiprion ocellaris was made sure to absorb the astaxanthin extracted from Haematococcus pluvialis. Finally, Amphiprion ocellaris was fed with the diet supplementations with different concentrations of extracted astaxanthin. By doing so, the effect on survival, growth and pigmentation of Amphiprion ocellaris can be observed. The result was used to compare with commercially available synthetic astaxanthan.
Experiment I aimed to know the effect of commercially available hydroponic medium─Hyponex Precious the 4th on the maximum biomass of Haematococcus pluvialis, and to compare the result with the JM medium. In order to investigate the astaxanthin extraction yield, the algae powder was extracted in two different ways, acetic acid-DMSO method and HCl-acetone method. The biomass of Hyponex Precious the 4th medium at concentrations 10 mg/L, 20 mg/L, 40 mg/L, 60 mg/L were all increased in a short period of time, among the all, concentration 20 mg/L, 60 mg/L yield the most significant results. The maximum biomass reached at the concentration of 40 mg/L on the 26th day (1.16 ± 0.81 × 105 cells/mL). The astaxanthin yield of acetic acid-DMSO method and HCl-acetone method was 19.20 ± 0.49 mg/g cell and 21.99 ± 0.52 mg/g cell separately. With the procedure of removing chlorophylls, the astaxanthin yield was 15.80 ± 0.98 mg/g cell and 20.41 ± 0.52 mg/g cell separately, while the astaxanthin yield of HCl-acetone method remained the same.
Experiment II aimed to observe the effect of dietary supplementation with Haematococcus pluvialis algae powder on survival, growth and pigmentation of Amphiprion ocellaris for 10 weeks with initial weight of 0.19 ± 0.05 g, and to compare the result with commercially available synthetic astaxanthan. The final weight of Amphiprion ocellaris with diet containing algae powder was 0.22 ~ 0.26 g, weight gain was 18.86 ~ 30.56 %, feed conversion rate was 3.24 ~ 5.01, specific growth rate was 0.21 ~ 0.33 %, the survival rate was 84 ~ 98 %. The final weight of Amphiprion ocellaris with diet containing synthetic astaxanthin was 0.23 ± 0.06 g, weight gain was 24.42 ± 4.76 %, feed conversion rate was 4.28 ± 0.70, specific growth rate was 0.27 ± 0.05 %, and survival rate was 94 ± 2.83 %. The result did not show significant effect on dietary supplementation with Haematococcus pluvialis algae powder on survival and growth. No significant effect was observed on pigmentation for dietary supplementation with Haematococcus pluvialis algae powder as well.
Experimental observation proceeded to detect dietary supplementation with high concentrations of astaxanthin extracted from Haematococcus pluvialis for 8 weeks. The result showed an increase of the skin pigmentation as the concentration of extracted astaxanthin in diet increased. The color parameter L* value was 43.17 ~ 48.57, a* value was 49.97 ~ 58.67, b* value was 56.37 ~ 59.93, C* value was 77.32 ~ 83.85, and H* value was 43.88 ~ 49.80.
Experiment III aimed to examine the effect of dietary supplementation with various concentrations of astaxanthin extracted from Haematococcus pluvialis on survival, growth and pigmentation of Amphiprion ocellaris for 8 weeks with initial weight of 0.28 ± 0.06 g, and to compare the result with commercially available synthetic astaxanthan. The final weight of Amphiprion ocellaris with diet containing extracted astaxanthin was 0.36 ~ 0.39 g, weight gain was 32.61 ~ 38.99 %, feed conversion rate was 2.10 ~ 2.46, specific growth rate was 0.35 ~ 0.41 %, the survival rate was 100 %. The result show that Amphiprion ocellaris fed with extracted astaxanthin 100 mg/kg had better weight gain and feed conversion rate. As for the pigmentation, the treatment of 200 mg/kg showed a better result.

謝辭 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 IX
附錄 X
第一章、前言 1
第二章、文獻整理 3
一、雨生紅球藻 3
二、眼斑海葵魚 7
第三章、材料與方法 10
一、實驗設計 10
二、實驗藻種 11
三、藻種培養條件及誘導條件 11
四、實驗動物 11
五、實驗動物養殖系統 11
六、實驗養殖條件 12
七、實驗飼料配製 12
八、實驗分析項目 12
九、體表比色方法 14
十、統計分析 15
第四章、結果 16
一、雨生紅球藻之培養及蝦紅素萃取定量 16
二、飼料添加雨生紅球藻粉及萃取之蝦紅素對眼斑海葵魚活存、成長及呈色之影響 18
三、飼料添加不同濃度雨生紅球藻萃取之蝦紅素對眼斑海葵魚活存、成長及呈色之影響 25
第五章、討論 30
一、雨生紅球藻之培養及蝦紅素萃取定量 30
二、飼料添加雨生紅球藻粉及萃取之蝦紅素對眼斑海葵魚活存、成長及呈色之影響 32
第六章、結論 39
參考文獻 40

邵廣昭,2016。台灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw.
李慧明、朱偉、李建龍,2008。不同氮源對四尾柵藻生長的影響。水資源保護,24,60-67。
何源興、施勝中、陳文義,2007。臺灣產五種小丑魚之繁養殖。農政與農情,182,95-99。
何源興、鄭明忠、施勝中、李沛珊、陳富美、陳文義,2011。海水觀賞魚之繁養殖研究。農業生技產業季刊,31,32-43。
吳長斌、張佳峰、翟興文,2003。氮源對雨生红球藻和扁藻生長的影響。河北漁業,24-25。
沈世傑,1993。台灣魚類誌。國立台灣大學動物學系。
周廷耀,2003。碳源的添加對等鞭金藻增殖的影響。國立中山大學海洋生物研究所碩士論文。
許依鎔,2006。雨生紅球藻兩階段養殖及其紅色類胡蘿蔔素 (astaxanthin) 組成之研究。國立臺灣海洋大學水產養殖學系碩士論文。
陳建同,2008。不同類胡蘿蔔素對白條海葵魚的影響。國立臺灣海洋大學水產養殖學系碩士論文。
陳瓊,2006。氮、磷對水華發生的影響。生物學通報,41,12-14。
黃轍勻,2011。利用聚乙二醇 (PEG) 鹽類 (Salt) 兩水相系統萃取雨生紅球藻中之蝦紅素。明志科技大學生化工程系碩士論文。
趙文婉,2011。五彩繽紛的海洋生物。科學發展,464,52-59。
廖于萍,2015。飼料中添加不同色素對勒氏新亮麗鯛體表呈色之影響。國立臺灣海洋大學水產養殖學系碩士論文。
蘇皇銘,2008。飼糧蝦紅素及光照時段對血鸚鵡之活存、成長、呈色及褪色之影響。國立臺灣海洋大學水產養殖學系碩士論文。
Aflalo, C., Meshulam, Y., Zarka, A., Boussiba, S., 2007. On the relative efficiency of two‐vs. one‐stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98, 300-305.
Allen, G. R., 1991. Damselfishes of the world. Mergus. 271 pp.
Allsop, D. J., West, S. A., 2003. Constant relative age and size at sex change for sequentially hermaphroditic fish. J. Evol. Biol. 16, 921-929.
Bidigare, R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R.W., Macko, S., 1993. Evidence a photoprotective for secondary carotenoids of snow algae. J. Phycol. 29, 427-434.
Boonnoun, P., Kurita, Y., Kamo, Y., 2014. Wet extraction of lipids and astaxanthin from Haematococcus pluvialis by liquefied dimethyl ether. J. Nutr. Food Sci. 4, 305.
Borowitzka, M. A., 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25, 743-756.
Borowitzka, M. A., Huisman, J. M., Osborn, A., 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3, 295-304.
Boussiba, S., Vonshak, A., 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32, 1077-1082.
Breithaupt, D. E., 2004. Identification and quantification of astaxanthin esters in shrimp (Pandalus borealis) and in a microalga (Haematococcus pluvialis) by liquid chromatography-mass spectrometry using negative ion atmospheric pressure chemical ionization. J. Agric. Food Chem. 52, 3870-3875.
Brennan, L., Owende, P., 2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14, 557-577.
Britton, G., 1995. Structure and properties of carotenoids in relation to function. The FASEB J. 9, 1551-1558.
Bubrick, P., 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38, 237-239.
Buston, P., 2003. Social hierarchies: size and growth modification in clownfish. Nature. 424, 145-146.
Capelli, B., Bagchi, D., Cysewski, G. R., 2013. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods. 12, 145-152.
Cheeke, P. R., 1998. Natural toxicants in feeds, forages, and poisonous plants. Interstate Publishers. 479 pp.
Choubert, G., Heinrich, O., 1993. Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture. 112, 217-226.
Choubert, G., Mendes-Pinto, M. M., Morais, R., 2006. Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture. 257, 429-436.
Cifuentes, A. S., Gonzalez, M. A., Vargas, S., Hoeneisen, M., Gonzalez, N., 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36, 343-357.
Cuvier, G., 1830. Discours sur les révolutions de la surface du globe: et sur les changements qu'elles ont produits dans le règne animal. E. d'Ocagne, Paris.
Darachai, J., Piyatiratitivorakul, S., Menasveta, P., 1999. Effect of astaxanthin on growth and survival of Penaeus monodon larvae. In: Proceedings of the 37th Kasetsart University Annual Conference. 36-41.
Davidson, K., Flynn, K., Cunningham, A., 1992. Non‐steady state ammonium‐limited growth of the marine phytoflagellate, Isochrysis galbana Parke. New Phytol. 122, 433-438.
Dong, S., Huang, Y., Zhang, R., Wang, S., Liu, Y., 2014. Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. Sci.World J. 2014, 1-7.
Doolan, B. J., Booth, M. A., Allan, G. L., Jones, P. L., 2009. Changes in skin colour and cortisol response of Australian snapper Pagrus auratus (Bloch and Schneider, 1801) to different background colours. Aquacult. Res. 40, 542-550.
Fábregas, J., Otero, A., Maseda, A., Domínguez, A., 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89, 65-71.
Flotow, J.V., 1844. Beobachtungen über Haematococcus pluvialis. Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher. 413-606.
García-Malea, M., Acién, F., Fernández, J., Cerón, M., Molina, E., 2006. Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb. Technol. 38, 981-989.
Gouveia, L., Choubert, G., Pereira, N., Santinha, J., Empis, J., Gomes, E., 2002. Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquacult. Res. 33, 987-993.
Gouveia, L., Rema, P., 2005. Effect of microalgal biomass concentration and temperature on ornamental goldfish (Carassius auratus) skin pigmentation. Aquacult. Nutr. 11, 19-23.
Gouveia, L., Rema, P., Pereira, O., Empis, J., 2003. Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquacult. Nutr. 9, 123-129.
Grung, M., D'Souza, F. M., Borowitzka, M., Liaaen-Jensen, S., 1992. Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3' S)-astaxanthin esters. J. Appl. Phycol. 4, 165-171.
Guerin, M., Hosokawa, H., 2001. Pigmentation of red seabream with natural astaxanthin derived from the alga Haematococcus pluvialis: comparison with synthetic astaxanthin. Aquaculture 2001 conference. World Aquaculture Society, Lake Buena Vista, Florida, January 2001.
Guerin, M., Huntley, M. E., Olaizola, M., 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210-216.
Hagen, C., Braune, W., Björn, L. O., 1994. Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a “sunshade”. J. Phycol. 30, 241-248.
Hagen, C., Braune, W., Greulich, F., 1993. Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV. Protection from photodynamic damage. J. Photochem. Photobiol. B: Biol. 20, 153-160.
Hagen, C., Siegmund, S., Braune, W., 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37, 217-226.
Harker, M., Tsavalos, A. J., Young, A. J., 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55, 207-214.
Hattori, A., 1991. Socially controlled growth and size-dependent sex change in the anemonefish Amphiprion frenatus in Okinawa, Japan. Jap. J. Ichthyol. 38, 165-177.
Hattori, A., 2000. Social and mating systems of the protandrous anemonefish Amphiprion perideraion under the influence of a larger congener. Austral Ecol. 25, 187-192.
He, P., Duncan, J., Barber, J., 2007. Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. J. Integr. Plant Biol. 49, 447-451.
Hejazi, M. A., Wijffels, R. H., 2004. Milking of microalgae. Trends Biotechnol. 22, 189-194.
Higuera-Ciapara, I., Felix-Valenzuela, L., Goycoolea, F., 2006. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 46, 185-196.
Ho, A. L., O’Shea, S. K., Pomeroy, H. F., 2013a. Dietary esterified astaxanthin effects on color, carotenoid concentrations, and compositions of clown anemonefish, Amphiprion ocellaris, skin. Aquacult. Int. 21, 361-374.
Ho, A. L., Orlando Bertran, N. M., Lin, J., 2013b. Dietary esterified astaxanthin concentration effect on dermal coloration and chromatophore physiology in spinecheek anemonefish, Premnas biaculeatus. J. World Aquacult. Soc. 44, 76-85.
Hoff, F. H., Moe, M. A., Johnson, D., Lichtenbert, J., 1996. Conditioning, spawning and rearing of fish with emphasis on marine clownfish. Aquaculture Consultants, Incorporated. 212 pp.
Hudon, J., 1994. Showiness, carotenoids, and captivity: a comment on Hill (1992). The Auk, 218-221.
Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., Watanabe, H., 2006. Astaxanthin, a Carotenoid with Potential in Human Health and Nutrition. J. Nat. Prod. 69, 443-449.
Inskeep, W. P., Bloom, P. R., 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol. 77, 483-485.
Jaime, L., Rodríguez-Meizoso, I., Cifuentes, A., Santoyo, S., Suarez, S., Ibáñez, E., Señorans, F. J., 2010. Pressurized liquids as an alternative process to antioxidant carotenoids extraction from Haematococcus pluvialis microalgae. J. Food Sci. Technol. 43, 105-112.
James, R., Sampath, K., Thangarathinam, R., Vasudevan, I., 2006. Effect of dietary spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Isr. J. Aquacult. Bamidgeh. 58, 97-104.
Jeon, Y. C., Cho, C. W., Yun, Y. S., 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb. Technol. 39, 490-495.
Johnson, E. A., An, G. H., 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11, 297-326.
Kalinowski, C., Robaina, L., Fernández-Palacios, H., Schuchardt, D., Izquierdo, M., 2005. Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. Aquaculture. 244, 223-231.
Kang, C. D., Sim, S. J., 2007. Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnol. Prog. 23, 866-871.
Kaplan, D., Richmond, A., Dubinsky, Z., Aaronson, S., 1986. Algal nutrition. In: Handbook of microalgal mass culture, Richmond, A. (Ed). 147-198.
Katsuda, T., Lababpour, A., Shimahara, K., Katoh, S., 2004. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb. Technol. 35, 81-86.
Kim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., Oh, Y. K., 2016. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour. Technol. 199, 300-310.
Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N., Tsuji, Y., 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84, 94-97.
Lang, M., Wells, J., 1987. A review of egg shell pigmentation. Worlds Poult. Sci. J. 43, 238-246.
Lee, Y.K. and Zhang, D.H. 1999. Production of astaxanthin by Haematococcus. In: Z. Cohen (Ed.), Chemicals from Microalgae, Taylor and Francis, London: 173-190.
Lemoine, Y., Schoefs, B., 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth. Res. 106, 155-177.
Li, J., Zhu, D., Niu, J., Shen, S., Wang, G., 2011. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 29, 568-574.
Lorenz, R. T., Cysewski, G. R., 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18, 160-167.
Ma, R. Y. N., Chen, F., 2001. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem. 36, 1175-1179.
Margalith, P., 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol. 51, 431-438.
Markou, G., Nerantzis, E., 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 31, 1532-1542.
Mendes‐Pinto, M., Choubert, G., Morais, R., 2004. Effect of dietary bile extracts on serum response of astaxanthin in rainbow trout (Oncorhynchus mykiss): a preliminary study. Aquacult. Nutr. 10, 353-357.
Meyers, S. P., Chen, H. M., 1982. Astaxanthin and its role in fish culture. Proc. Warmwater Fish Culture Workshop. 154-164.
Miki, W., 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63, 141-146.
Milledge, J. J., 2011. Commercial application of microalgae other than as biofuels: a brief review. Rev. Environ. Sci. Biotechnol. 10, 31-41.
Montsant, A., Zarka, A., Boussiba, S., 2001. Presence of a nonhydrolyzable biopolymer in the cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae). Mar. Biotechnol. 3, 515-521.
Nagaraja, S., Arulmurugan, P., Rajaram, M., Sundararaj, R., Rengasamy, R., 2012. Enhanced production of astaxanthin at different physico-chemical parameters in the green alga Haematococcus pluvialis Flotow. Phykos. 42, 59-71.
Nixon, J. C., 1985. Naturally occurring pterins. In: Folates and pterins, Chemistry and Biochemistry of Folates, Blakley, R. L., Benkovic, S. J. (Eds.), John Wily and Son. 2, 1-42.
Olaizola, M., 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20, 459-466.
Park, J. C., Choi, S. P., Hong, M. E., Sim, S. J., 2014. Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst. Eng. 37, 2039-2047.
Proctor, V. W., 1957. Some controlling factors in the distribution of Haematococcus pluvialis. Ecology. 38, 457-462.
Renstrøm, B., Borch, G., Skulberg, O. M., Liaaen-Jensen, S., 1981. Optical purity of (3S, 3'S)-astaxanthin from Haematococcus pluvialis. Phytochemistry. 20, 2561-2564.
Sarada, R., Tripathi, U., Ravishankar, G., 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 37, 623-627.
Sarada, R., Vidhyavathi, R., Usha, D., Ravishankar, G., 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54, 7585-7588.
Schiedt, K., 1998. Absorption and metabolism of carotenoids in birds, fish and crustaceans. Carotenoids. 3, 285-358.
Shimidzu, N., Goto, M., Miki, W., 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fish. Sci. 62, 134-137.
Sommer, T., Potts, W., Morrissy, N., 1991. Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture. 94, 79-88.
Steinbrenner, J., Linden, H., 2003. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol. Biol. 52, 343-356.
Stross, R. G., 1963. Nitrate preference in Haematococcus as controlled by strain, age of inoculum, and pH of the medium. Can. J. Microbiol. 9, 33-40.
Tanaka, Y., Yamamoto, A., Kamata, T., Simpson, K. L., 1992. Biochemical study on the carotenoids in the anemonefish, Amphiprion spp. Mem. Fac. Fish. Kagoshima Univ. 41, 1-8.
Teimouri, M., Amirkolaie, A., Yeganeh, S., 2013. Effect of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). World J. Fish Mar. Sci. 5, 194-202.
Teimouri, M., Keramat Amirkolaie, A., 2015. The effects of synthetic pigments on pigmentation of Pethia conchonius (Hamilton, 1822). Aquacult. Res. 46, 1156-1161.
Thompson, A.S., Rhodes, J.C., Pettman, I., 1988. Culture collection of algae and protozoa, catalogue of strains. Culture Collection of Algae and Protozoa Freshwater Biological Association, Cumbria, UK. 164 pp.
Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., Masojídek, J., 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15, 127-136.
Toyomizu, M., Sato, K., Taroda, H., Kato, T., Akiba, Y., 2001. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br. Poult. Sci. 42, 197-202.
Turujman, S.A., Wamer, W.G., Wei, R.R., Albert, R.H., 1996. Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. J. AOAC Int. 80, 622-632.
Urich, K., 1994. Comparative animal biochemistry. Springer, Berlin.
Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J., Li, S., 2014. The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour. Technol. 163, 26-32.
Wang, J., Han, D., Sommerfeld, M. R., Lu, C., Hu, Q., 2013a. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25, 253-260.
Wang, J., Sommerfeld, M. R., Lu, C., Hu, Q., 2013b. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae. 28, 193-202.
Wang, S. B., Hu, Q., Sommerfeld, M., Chen, F., 2004. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics. 4, 692-708.
Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., Kawano, S., 2013. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga. PLoS One. 8, e53618.
White, D., Moody, A., Serwata, R., Bowen, J., Soutar, C., Young, A., Davies, S., 2003. The degree of carotenoid esterification influences the absorption of astaxanthin in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Nutr. 9, 247-251.
Wilkerson, J.D., 1998. Clownfishes: a guide to their captive care, breeding and natural History. Microcosm. 240 pp.
Yasir, I., Qin, J.G., 2009. Effect of light intensity on color performance of false clownfish, Amphiprion ocellaris Cuvier. J. World Aquacult. Soc. 40, 337-350.
Yasir, I., Qin, J.G., 2010. Effect of dietary carotenoids on skin color and pigments of false clownfish, Amphiprion ocellaris, Cuvier. J. World Aquacult. Soc. 41, 308-318.
Yi, X., Xu, W., Zhou, H., Zhang, Y., Luo, Y., Zhang, W., Mai, K., 2014. Effects of dietary astaxanthin and xanthophylls on the growth and skin pigmentation of large yellow croaker Larimichthys croceus. Aquaculture. 433, 377-383.
Yi, X.W., Li, J., Xu, W., Zhang, Y.J., Zhou, H. H., Smith, A., Zhang, W. B., Mai, K. S., 2015. Effects of dietary xanthophylls/astaxanthin ratios on the growth and skin pigmentation of large yellow croaker Larimichthys crocea (Richardson, 1846). J. Appl. Ichthyol. 31, 780-786.
Yong, Y., Lee, Y. K., 1991. Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia. 30, 257-261.
Yuan, J. P., Chen, F., 1997. Identification of astaxanthin isomers in Haematococcus lacustris by HPLC-photodiode array detection. Biotechnol. Tech. 11, 455-459.
Yuangsoi, B., Jintasataporn, O., Areechon, N., Tabthipwon, P., 2011. The pigmenting effect of different carotenoids on fancy carp (Cyprinus carpio). Aquacult. Nutr. 17 (2), 306-316.
Zhang, W., Wang, J., Wang, J., Liu, T., 2014. Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour. Technol. 158, 329-335.
Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., Wu, H. F., 2013. Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Mar. Drugs. 11, 1644-1655.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top