跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯婷文
研究生(外文):Khine Htet Htet Win
論文名稱:鹽度以及植物對於蝦之生物量比對海馬齒莧-白蝦共生浮筏系統中營養利用與作物產量之影響
論文名稱(外文):The Effect of Salinity and Biomass Ratio of Plant to Shrimp on the Nutrient Utilization and Crop Production in a Sea Purslane (Sesuvium portulacastrum) –White Shrimp (Litopenaeus vannamei)Raft Aquaponic System
指導教授:陳瑤湖陳瑤湖引用關係
指導教授(外文):Chien, Yew-Hu
口試委員:賴弘智黃承輝鄭達智陳瑤湖
口試委員(外文):Lai, Hong-ThihHuang, Chen-HueiCheng, Philip T.Chien, Yew-Hu
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:70
中文關鍵詞:魚菜共生系統海馬齒莧白蝦飼料轉換係數總氨氮亞硝酸硝酸
外文關鍵詞:Aquaponic systemSea PurslaneWhite ShrimpFCRTotal ammonia nitrogenNitriteNitratePhosphate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:2
為了要探討整合海馬齒莧(Sea purslane, Sesuvium portulacastrum),一種可食用且廣 泛分布耐鹽海岸植物,以及白蝦(White shrimp, Litopenaeus vannamei),一種耐低鹽且最被 養殖的對蝦,成為一半鹹水的魚菜共生生產系統,我們進行了兩個研究:1. 鹽度對於培 養在水耕系統的三品系的海馬齒莧的成長及營養鹽利用的影響;以及2. 在浮符式魚菜共 生系統白蝦與海馬齒莧適當的生物量比率的研究。第一實驗結果顯示此植物不同的品系對於去除所有形式的氮及磷沒造成差異。鹽度在10 psu可能會加強硝化作用而導致比在5 psu及0 psu產生較高濃度的硝酸。在10 psu的磷酸較0 psu者高。總之,三種品系的海馬齒 莧皆可作為水耕栽培的候選植物,而在半鹹水系統以10 psu較佳。第二實驗使用2等級生 物量的蝦(LS:3克;HS:6克) × 3等級生物量的海馬齒莧(0P,0克;LP,30克,HP,60克) 而形成6處理:4個PP組(有海馬齒莧組)-HS:HP,HS:LP;LS:HP及LS:LP)及2個0P組(無海馬齒莧組)-HS:0P及LS:0P。結果顯示蝦的生物量影響蝦的養殖表現,亦即在LS組有比HS組的蝦有較高的百分比增重及較好的飼料轉換率。PP組的總氮只有約0P組的一半。這可能歸諸於在海馬齒莧根團中活耀的硝化過程及產生的硝酸鹽被根所吸收而使得總氨氮的濃度極低,只有0.01 mg/L。HS組的總氮高於LS組,0P組比PP組也是一樣。PP對於磷的累積 無影響。PP的pH範圍比0P狹窄。整體而言,最佳的蝦生物量對海馬齒莧生物量的比是3克的蝦:60克的植物,或者是LS:HP處理組,因為此組的蝦的活存及成長較高,pH的變化狹窄,硝酸及總氮的降低較多。海馬齒莧對於改善水質有顯著的效果,因而有好的白蝦養殖表現。
To find out the feasibility of integrating sea purslane (Sesuvium portulacastrum), an edible and widely distributed salt tolerant coastal plant and white shrimp (Litopenaeus vannamei), a low salinity tolerant and most cultured penaeid into a brackish aquaponics production system, two studies were conducted: 1. Salinity effects on the growth and nutrient utilization of three varieties of sea purslane cultured in raft hydroponic system and 2. A research on the optimal biomass ratio of white shrimp and sea purslane culture in raft aquaponic system. First experiment results showed that plant variety did not make any difference on the removal of all nitrogen species and phosphate. Salinity at 10 psu may enhance the nitrification and result in higher concentration of nitrate than at 5 psu and 0 psu. Phosphate concentration was also higher at 10 psu than 0 psu. In conclusion, all varieties of purslane were candidate plants to be used in hydroponic and so in brackish aquaponics system at 10 psu. The second experiment use a factorial combination of 2 levels of shrimp biomass (LS: 3 g; HS: 6 g) X 3 levels of purslane biomass (0P, 0 g; LP, 30 g; HP, 60 g) to formulate 6 treatments: 4 PP (presence of purslane) group-HS:HP, HS:LP, LS:HP, and LS:LP and 2 0P (absence of purslane) group-HS:0P and LS: 0P. The result showed that shrimp biomass affected shrimp rearing performance, namely, shrimp in LS groups had higher percent weight gain and better FCR than those in HS. Plant biomass showed no effect on shrimp growth, but shrimp in HP groups had better FCR than LP groups. The PP groups had only about half of the total nitrogen (TN) as 0Pgroups. This can be attributed to the very low total ammonia concentration, 0.01 mg/L, which resulted from the vigorous nitrification processes occurred in purslane’s root mass and purslane’s uptake of the resulting nitrate. HS had higher TN than LS, so did 0P than PP.PP did not have effect on phosphate accumulation. PP had narrower pH range than 0P. In overall, best shrimp biomass to purslane biomass ratio was 3g shrimp biomass: 60g plant biomass, or the LS:HP treatment since it resulted in high shrimp survival and growth and stable water quality in terms of pH range, reduction of nitrate and total nitrogen. Purslane had had significant effect in improving water quality and consequently, the rearing performance of white shrimp.
ACKNOWLEDGEMENTS i
ABSTRACT ii
摘要 iii
CHAPTER 1 OVERALL INTRODUCTION 1
CHAPTER 2
Experiment one: Salinity effects on the growth and nutrient utilization of three varieties of Sea Purslane (Sesuvium portulacastrum) cultured in raft hydroponic system
2.1 Abstract 7
2.2 Introduction 8
2.3 Material and Methods 9
2.3.1 Experimental Design 9
2.3.2 System Setup and Sampling 9
2.3.3 Water Analysis 9
2.3.4 Plant growth and moisture content 10
2.3.5 Statistical Analysis 10
2.4 Results 11
2.4.1 Plant growth 11
2.4.2 Water quality parameter 11
(I) Nitrogenous species 11
(a) Total ammonium nitrogen 11
(b) Nitrites 11
(c) Nitrates 12
(d) Total Nitrogen 13
(II) Phosphates 13
(III) pH 13
2.4.3 Correlation analysis 13
2.5 Discussions 14
2.5.1 Plant growth 14
2.5.2 Water quantity and quality 14
2.6 Conclusion 17
2.7 Tables, Figure and Photos 18
CHAPTER 3
Experiment two: A research on the effect of varying shrimp to plant biomass ratio on the growth performances and water quality on White Shrimp (Litopenaeus vannamei) and Sea Purslane plant (Sesuvium portulacastrum) culture in raft aquaponic system: Comparison with control.
3.1 Abstract 33
3.2 Introduction 34
3.3 Material and Methods 37
3.3.1 Experimental Design 37
3.3.2 Feeding Regime 37
3.3.3 Water sampling and analysis 38
3.3.4 Water loss 38
3.3.5 Shrimp rearing performance measurements 38
3.3.6 Plant rearing performance measurements 38
3.3.7 Statistical Analysis 38
3.4 Results 40
3.4.1 Plant growth 40
3.4.2 Shrimp growth 40
3.4.3 Water quantity and quality 40
(I) Water loss 40
(II) Nitrogenous species 40
(a) Total ammonium nitrogen 40
(b) Nitrites 41
(c) Nitrates 41
(d) Total Nitrogen 41
(III) Phosphates 42
(IV) pH 42
3.4.4. Correlation analysis 42
3.5 Discussions 43
3.5.1 Plant growth 43
3.5.2 Shrimp growth 43
3.5.3 Water quantity and quality 43
3.6 Conclusion 46
3.7 Tables, Figures and Photos 47

CHAPTER 4 LITERATURE CITED
References 59

Abdel-Tawwab, M., Ahmad, M.H., Khattab, Y.A.E., Shalaby, A.M.E., 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298: 267-274
Alam, A.M., Juraimi, A.S., Rafii, M.Y., Hamid, A.A., Aslini, F., Alam, M.Z., 2015. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chemistery. 169:439-447

American Public Health Association (APHA), 1998. Standard methods for the examination of water and wastewater, 20th edition. American Water Works Association, Environment Federation, DC, USA, 1325 pp.

Andreas Graber and Ranka Junge, 2009. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 246; 147-156.

Attasat, S., Wanichpongpan, P., Ruenglertpanyakul, W., 2013. Design of Integrated Aquaculture of the Pacific White Shrimp, Tilapia and Green Seaweed. Journal of Sustainable Energy & Environment. 4: 9 -14.

Bakhsh, K., Shariff, R., 2007. Nutrient optimization and computerized decision support program in recirculating integrated aquaculture system. The International Journal of Environmental, Cultural, Economic and Social sustainability 3 (5): 25 -34

Balakrishnan, G., Peyail, S., Ramachandran, K., Theivasigamani, A., Savji, K. A., Chokkaiah, M., Nataraj, P., 2011. Growth of Cultured White Leg Shrimp Litopenaeus Vannamei (Boone 1931) In Different Stocking Density. Advances in Applied Science Research, 2011, 2 (3): 107-113

Bernstein, L., 1959. Salt tolerance of vegetable crops in the West. Agricultural Research Service, US Department of Agriculture, for official use. Soil Science and Plant Nutrition, 205 -5.

Bernstein, L., 1964. Salt tolerance of plants. Agricultural Research Service, US Department of Agriculture, for official use. Soil Science and Plant Nutrition, 283 -23.

Bernstein, L., 1975. Effects of Salinity and Sodicity on Plant Growth. Agricultural Research Service, US Department of Agriculture, for official use. Soil Science and Plant Nutrition, 57: 341–347

Borba, B.D., Jack, R.F., Rohrer, J., 2014. Determination of Total Nitrogen and Phosphorus in Wastewaters by Alkaline Persulfate Digestion Followed by IC. Thermo Fisher Scientific, Sunnyvale, CA USA .

Boxman, S., Kevan, Nystrom, M., Ergas, S.J., Trotz, M.A., 2015. Aquaponic System Produces Red Drum, Saltwater Vegetable Species. The Global Magazine for Farmed Seafood. Vol;18.

Burits, M., Asres, K., Buclar, F., 2001. The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytotherapy Research. 15: 103 -108.

Chien, Y-H., 1992. Water quality requirements and management for marine shrimp culture. World Aquaculture Society. 144-156

Cho, C.Y. and Bureau, D.P., 1997. Reduction of waste output from salmonid aquaculture through feeds and feeding. Progressive Fish Culturist, 59:155-160.

Conco, 1991. Zulu traditional medicine: its role in Modern society. Community Health. 5: 8 -13

Endult, A., Jusoh, A., Ali, N., Wan, W.B., Hassan, A., 2009. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatic) in an aquaponic recirculating system. Desalination and Water Treatment. 5: 19 – 28.

FAO, 1979. Role of fishery technology in the management and development of freshwater fisheries in Africa.

FAO, 2014. Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589

Hargreaves, J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166 (3–4), pp. 181–212

Hasan, M.R., 2001. Nutrition and feeding for sustainable aquaculture development in the third millennium. In: Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 193-219.

Hoareau, L., DaSilva, E.J., 1999. Medicinal plants: a re-emerging health aid. Journal of Biotechnology. 2: 56 -70.

Hopkins, J., Stephen, Sandifer, P.A., Browdy, C.L., 1995. A review of water management regimes which abate the environmental impacts of shrimp farming. In: Aquaculture a 95 u Book of Abstracts.

Hu, Z., Jae, W. L., Kartik, C., Sungpyo, K., Ariane, C. B., Samir, K. K., 2015. Effect of plant species on nitrogen recovery in aquaponic. Bioresource Technology, 188: 92-98.

Huang, K., Wang, W., Lu, J., Dai, X.W., Zhou, J.N., 2004. Salinity effects on growth and biochemical composition of Penaeus vannamei. Mar Sci 28:20–25

ICES/FAO, 2005. Indonesia. Review of bycatch in world shrimp trawl fisheries. Report of the ICES/FAO Working Group on Fishing Technology and Fish Behaviour, Rome, 18–22

Jackson, C. R. and Vallaire, S. C., 2009. Effects of salinity and nutrient enrichment on microbial assemblages in Louisiana wetland sediments. Wetlands, 29: 277-287

Jensen and Collins, 1985. Hydroponic vegetable production. Horticultural Reviews 7: 483 -558.

Kafi, M., and Rahimi, Z., 2011. Effect Of Salinity And Silicon On Root Characteristics, Growth, Water Status, Proline Content And Ion Accumulation Of Purslane ( Portulaca Oleracea L.). Soil Science And Plant Nutrition 57 (2): 341-347.

Karen M. Buzby and Lian-Shin Lin, 2014. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquacultural Engineering. 63; 39 44.

Kautsky, N., Ronnback, P., Tedengren, M., Troell, M., 2000. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture. 191: 145 -161.

Killic, C.C., Kukul, Y.S., Anac, D., 2008. Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agricultural Water Management. 7: 854 -858

Kiss,G., Jansenb, H., Castaldoc, V.L., Orsia, L., 2015. International Conference on Sustainable Design, Engineering and Construction The 2050 City. Procedia Engineering. 118: 326 -355

Kloas,W., Groß, B., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B. , Wuertz, B., Zikova, A., Rennert, B., 2015. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. 7: 179 -192.

Lambers, H., Chapin, F.S., Thijs, L., Pons, 2008. Plant Physiological Ecology Book, 101-103.

Levey, J.A., 1993. Pathogenesis of human immunode ficiency virus infection. Microbiology and Molecular Biology Reviews. 57(1): 183–289.

Lewis, W. M., Yopp, J. H., Schramm JR, H.L., Brandenburg, A. M., 1978. Use of hydroponics to maintain quality of recirculated water in fish culture system. Transactions of the American Fisheries Society.107; 92-99.

Liao, I. and Chien, Y-H., 2011. The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. pp 489-519

Lin, Y-C and Chen, J-C., 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224: 193-201.

Lokhande, V.H., Kudale, S., Nikalje, G., Desai, N., Suprasanna, P., 2012. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L Agron. Sustainable Dev., 33; 329–348

Love, D.C., Fry, J.P., Li, X., Hill, E. S., Genello, L.,Semmens, K., Thompson, R. E., 2015a. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture. 435; 67 -74.

Love, D.C., Uhl, M.S., Genello, L., 2015b. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering. 68; 19 -27.

Luqman, M., Batt, T. M., Tanvir, A., 2013. Phytoremediation of polluted water by trees: a review. African Journal of Agricultural Research, vol. 8, no. 17, pp. 1591–1595, 2013.

Main, K., Nysrom, M., Ergas, S.J., Trotz, M.A., 2015. Aquaponic System Produces Red Drum, Saltwater Vegetable Species. Global Aquaculture Advocate.

Malcolm, J., 2007. Backyard Aquaponics Magazine, Issue 1, Retrieved 18 February 2015 from World Wide Web: www.backyardaquaponics magazine.com

Mallekh, R., Boujard, T., Lagardere, J.P., 1999. Evaluation of retention and environmental discharge of nitrogen and phosphorus by farmed turbot (Scophthalmus maximus). North American Journal of Aquaculture, 61:141-145.
Matsui, K., Togami, J., Mason, J.G., Chandler, S.F., Tanaka, Y., 2013. Enhancement of Phosphate Absorption by Garden Plants by Genetic Engineering: A New Tool for Phytoremediation. BioMed Research International. Article ID 182032

McGraw, W.J, Davis, D.A., Teichert-Coddington, D., Rouse, D.B., 2002. Acclimation of Litopenaeus vannamei postlarvae to low salinity: influence of age, salinity endpoint, and rate of salinity reduction. J World Aquac Soc 33:78–84.

McGraw, W.J., Scarpa, J., 2004. Mortality of freshwater-acclimated Litopenaeus vannamei associated with acclimation rate, habituation period, and ionic challenge. Aquaculture, 236:285–296.

Meister, R., Rajani, M.S., Ruzicka, D., Schachtman, D.P., 2014. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 19 (12):779-88

Menz, A., and Blake, B.F., 1980. Experiments on the growth of Penaeus vannamei Boone. Journal of Experimental Marine Biology and Ecology, 48:99–111.

Mongirdas, V., Kusta, A., 2006. Oxygen mass balance in a recirculation aquaculture system for raising European Wels (Silurus glanis L.). Ekologija 4: 58 -64

Naegel L., 1977. Combined production of fish and plants in recirculating water. Aquaculture. 10; 17 -24.

Neori, A., Shpigel, M., Ben-Ezra. D., 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture. 186: 279-291.

Neori, A., Cohen, I., Gordin, H., 1991. Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Botanica Marina. 34: 483-490.

Neumann, P., 1997. Salinity resistance and plant growth revisited. Plant, Cell and Environment, 20, 1193-1198.
Orcutt, D.M., and Nilsen, E.T., 2000. The Physiology of Plants Under Stress: Soil and Biotic Factors. Annals of Botany 87 (6) 853-853

Páez-Osuna, F., 2001. The Environmental Impact of Shrimp Aquaculture: Causes, Effects, and Mitigating Alternatives. Environmental Management. 38: 131-140

Pagand, P., Plancheton, J.P., Casellas, C., 2000. A model for predicting the quantities of dissolved inorganic nitrogen relased in effluents from a sea bass (Dicentrachus Labrax) recirculating water system. Aquaculture Engineering. 22: 137 -153.

Papatryphon, E., Petit, J.S., Eerf, Van, H.M.G., Kaushik, J., Kanyarushoki, C., 2005. Nutrient balance modeling as a tool for environmental management in aquaculture: the case of trout farming in France. Environmental Management 35 (2): 162 -174.

Peng, C., Zheng, J., Peng, W., He, S., Tang, T., Wang, W., 2002. The embryonic development of Penaeus vannamei and effect of temperature and salinity on embryonic development. J Shanghai Fish Univ 11:310–316
Pérez Farfante, I., Kensley, B.F., 1997. Penaeoid and sergestoid shrimp and prawns of the world-keys and diagnoses for the families and genera. Mem Mus Natn Hist Nat 175:1–233.

Petr, T., 2000. Interactions between fish and aquatic macrophytes in inland waters. A review.
FAO Fisheries Technical Paper. No. 396. Rome, FAO. 185p.

Phillips, 1995. Shrimp culture and the environment. Towards Sustainable Aquaculture in Southeast Asia and Japan: Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia, Iloilo City, Philippines, 26-28 July, 1994; 37-62.

Pilon-Smits, E., 2005. Phytoremediation. Annual Review of Plant Biology, vol. 56, pp. 15–39

Porter, C., Krom, M., Robbins, M., Brickell, L., Davidson, A., 1987. Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture, 66: 287-297.

Prescott, A., Venning, J., 1984. Flora of Australia. Vol 4, Aizoaceae. Australian Government Publishing Service, Canberra.

Rabe, T., van Staden, J., 1997. Antibacterial activity of South African plant used for medicinal purposes. Journal of Ethnopharmacology. 56: 81 -87

Rafael, L., Bernardo, B., 2008.Nitrogen and phosphorus waste in fish farming. B. Inst. Pesca, São Paulo, 34(4): 591 – 600.

Rakocy, J.E., 2007. Ten Guidelines of Aquaponic System. Aquaponic Journals 46: 14-17

Rakocy, J.E., Hargreaves, J.A., 1993. Integration of vegetable hydroponica with fish culture: A review. In Techniques for Modern Aquaculture, 112 -36.

Rakocy, J.E., Tidwell, J.H., 2012. Aquaponics- integrating fish and plant culture. Aquaculture Production Systems, Wiley-Blackwell, Oxford, UK, pp. 344-386.

Rakocy, J.E., 1989. Vegetable hydroponics and fish culture: a productive interphase. World Aquaculture 20 (3): 42 -7.
Rakocy, J.E., 2012. Aquaponic- Integrating Fish and Plant Culture, Aquaculture production system, 364-366

Rakocy, J. E., Masser, M. P., Losordo, T. M., 2006. Recirculating Aquaculture Tank Production Systems: Aquaponic – Integrating Fish and Plant Culture. SRAC Publication 454.

Rakocy, J. E., Smitherman, R. O., Tave, D., 1984. A recirculating system for tilapia culture and vegetable hydroponics. Auburn Symposium on Fisheries and Aquaculture, Auburn, pp. 103-114.

Rakocy, J., Shultz, R.C., Bailey, D.S., Thoman, E.S., 2004. Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. ISHS Acta Horticulturae 648: South Pacific Soilless Culture Conference – SPSCC.

Rakocy, J.E, Masser, M.P., Losordo, T.M., 2006. Recirculating aquaculture tank production systems: aquaponic – integrating fish and plant culture. SRAC Publication No. 464.

Rakocy, J.E., Tidwell, J.H., 2012. Aquaponics- integrating fish and plant culture. Aquaculture Production Systems, Wiley-Blackwell, Oxford, UK, pp. 344-386.

Rietz, D.N. and Haynes, R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology & Biochemistry, 35(6):845-854.

Rivera-Velázquez, G., Soto, L.A., Salgado-Ugarte, I.H., Naranjo, E.J., 2008. Growth, mortality and migratory pattern of white shrimp (Litopenaeus vannamei, Crustacea, Penaeidae) in the carre- tas-pereyra coastal lagoon system, Mexico. Revt Biol trop 56:523–33

Robert, M., Rajani, M.S., Daniel, R., Schachtman, P., 2014. Challenges of modifying root traits in crop for agriculture. Trends in plant science, 19:779-788.

Sandifer, P.A., Hopkins, J.S., 1996. Conceptual design of a sustainable pond-based shrimp culture system. Aquacultural Engineering, 15: 41-52.

Saoud, I.P., Davis, D.A., Rouse, D.B., 2003. Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture 217:373–383

Savidov, 2005. Evaluation of aquaponics technology in Alberta, Canada. Aquaponic J., pp. 1-6.

Schneider, O., Sereti, V., Eding, E.H., Verreth, J.A.J., 2005. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering 32: 379 – 401.

Shannon, M.A., Bohn, W.P., Elimelech, M., Georgiadis, J.G., Marĩas, B. J., Mayes, A.M., 2008. Science and technology for water purification in the coming decades. Nature, vol. 452, no. 7185, pp. 301–310

Simopoulos, A.P., Norman, H.A., Gillapsy, J.E., 1995. Purslane in human nutrition and its potential for world agriculture. Plants in Human Nutrition. 77: 47 -74.

Sneed, K., Allen, K., 1975. Fish Farming in Hydroponic. Aquaculture. 2 (1); 18 -20.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., Lovatelli, A., 2014. Small-scale aquaponic food production: integrated fish and plant farming. In: FAO, U. (Ed.), FAO Fisheries and Aquaculture Technical Paper. pp. 1–262, Rome, Italy.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., Lovatelli, A., 2014. Small-scale aquaponic food production: integrated fish and plant farming. In: FAO, U. (Ed.), FAO Fisheries and Aquaculture Technical Paper. pp. 1–262, Rome, Italy.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A.& Lovatelli, A., 2014. Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589. Rome, FAO. 262 pp.

Strogonov, 1962. Physiological Basis of Salt Tolerance of Plants. Trans. A. Poljakoff-Mayber, A. M. Meyer, Israel Program Sci. Trans!. Jerusalem, 1 964. 279 pp.

Teixeira, M. and Carvalho, I. S., 2009. Effects of salt stress on purslane (Portulaca oleracea) nutrition. Annals of Applied Biology, 154:77-86.

Timmons, M.B.J.M., Ebeling, F.W., Wheaton., Summerfelt, S.T. and Vinci, B.J., 2002. Recirculating aquaculture systems. 2nd Edition. Northest Reg. Aquaculture Centre Pub. NO. 01-002.

Troell M, Rönnbäck P, Halling C, Kautsky N, Buschmann A, H., 1999. Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. In: Sixteenth International Seaweed Symposium . Springer , pp. 603-611.

Tyson, R.V., Treadwell, D.D., Simonne, E.H., 2011. Opportunities and challenges to sustainability in aquaponic systems. Horttechnology, 21; 6-13.

Valente, L.M.P., Linares, F., Villanueva, J.L.R., Silva, J.M.G., Espe, M., Escórcio, C., Pires, M.A., Saavedra, M.J., Borges, P., Medale, F., Alvárez-Blázquez, B., Peleteiro, J.B., 2011. Dietary protein source or energy levels have no major impact on growth performance, nutrient utilisation or flesh fatty acids composition of market-sized Senegalese sole. Aquaculture, 318:128-137.

Valente, L.M.P., Linares, F., Villanueva, J.L.R., Silva, J.M.G., Espe, M., Escórcio, C., Pires, M.A., Saavedra, M.J., Borges, P., Medale, F., Alvárez-Blázquez, B., Peleteiro, J.B., 2011. Dietary protein source or energy levels have no major impact on growth performance, nutrient utilisation or flesh fatty acids composition of market-sized Senegalese sole. Aquaculture, 318:128-137.

Van der Watt and Pretorius, 2001. Purification and identification of active antibacterial components in Carpobrotus edulis L. Journal of Ethnopharmacology 76, 87 -91

Watten and Busch, 1984. Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system. Aquaculture, 41; 271-283.

Wenzel, L., Arvanitis, D., Rabus, H., Lederer, T., Baberschke, K., 1990. American Physical Society. Physical Review Letters. 65, 1522 .

Wu, R.S.S., 1995. The environmental impact of marine fish culture: Towards a sustainable future. Marine Pollution Bulletin. 31; 4-12

Yazici, I., Turkan, I., Sekmen, A.H., Demiral, T., 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61: 49–57

Zhang, P., Zhang, X., Li, J., Gao, T., 2009. Effect of salinity on survival, growth, oxygen consumption and ammonia-N excretion of juvenile white leg shrimp, Litopenaeus vannamei. Aquacult Res 40:1419–1427

Zweig, 1986. An integrated fish culture hydroponic vegetable production system. Aquaculture Magazine 12 (3): 34 -40.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top