跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾成佳
研究生(外文):Chung, Cheng-Chia
論文名稱:熱蒸鍍合成硫化鎘半導體三維結構及其光激發特性研究
論文名稱(外文):Theamal evaporation synthesis of 3D CdS semiconductors and their photoactivities
指導教授:梁元彰
指導教授(外文):Liang, Yang-Chang
口試委員:王丞浩施劭儒
口試委員(外文):Wang, Chen-HaoShih, Shao-Ju
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:微結構型態晶體缺陷光催化活性
外文關鍵詞:microstructureMorphologycrystallitedefectphotoactivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文利用熱蒸鍍法合成三維結構的硫化鎘 (CdS) ,藉由製程參數之操控來備製形態為交織的棒狀與相交片狀CdS晶體。此兩種型態的CdS晶體皆為六方晶結構。而棒狀CdS晶體是由包含許多不規則形狀的CdS晶粒所構成,而片狀的CdS則是由多個不同尺寸的CdS顆粒狀晶粒所組成。研究發現片狀CdS較於棒狀晶體具有較多晶體缺陷,這主要是因為片狀CdS具有較大量的晶界數以及擁有更多的硫缺陷。因此,片狀CdS表現出具有較高的光催化活性以及電化學性能。兩種型態的CdS晶體在微結構與光學性質上的明顯差異,解釋了片狀CdS晶體具有優越的光催化特性。
Networked rod-like and intersecting flake-like CdS crystallites with three-dimensional structures were synthesized using a thermal evaporation method. Both types of CdS crystallites had a hexagonal crystal for given growth conditions. The rod-like CdS crystallites contained many irregular CdS grains, whereas the flake-like CdS crystallites comprised many granular CdS grains with various sizes. Furthermore, the flake-like CdS crystallites were more defective than the rod-like CdS crystallites because they contained a larger number of grain boundaries and showed greater sulfur deficiency. Additionally, the flake-like CdS crystallites showed higher photocatalytic activity and photoelectrochemical performance. The substantial differences in the microstructure and optical properties between the two types of CdS crystallites explained the superior photoactivated properties of the flake-like CdS crystallites.
摘要 I
Abstract I
目次 II
表次 IV
圖次 V
第一章 前言 1
第二章 文獻回顧 1
2-1半導體材料 1
2-1-1 硫化物半導體 1
2-1-2 硫化鎘(CdS)結構與特性 2
2-2 硫化物半導體合成方式 3
2-2-1 水熱法 3
2-2-2 化學汽相沉積法 3
2-2-3電化學沉積法 5
2-3 光降解原理 6
2-4 光電化學原理 7
2-4-1 光電化學之能帶模擬 8
2-4-2 光電化學之電子電洞再結合 9
第三章 實驗方法與流程 35
3-1 實驗流程 35
3-1-1 CdS晶體合成及其參數討論 35
3-2 實驗藥品與設備 35
3-2-1 實驗藥品 35
3-2-2 晶體生長實驗設備 36
3-3 材料之備製程序 36
3-3-1 清潔試片 36
3-3-2 低壓化學氣相之CdS晶體製程參數 36
3-4 材料分析 37
3-4-1 掃描式電子顯微鏡 37
3-4-2 X光繞射分析 37
3-4-3 穿透式電子顯微鏡 37
3-4-4 光致發光能譜儀 38
3-4-5 可見光紫外光分光光譜儀 38
3-5 CdS之可見光驅動光降解特性分析 39
3-5-1 亞甲基藍液之備製 39
3-5-2 光降解試驗 39
3-6 CdS之可見光驅動光電化學特性分析 39
第四章 結果與討論 54
4-1 熱蒸鍍CdS之微結構分析 54
4-2 光致發光特性分析 55
4-3 可見光驅動光降解特性分析 56
4-4 可見光驅動光電化學特性分析 56
第五章 總結論 73


1. 李明達, 施敏, 交通大學出版社, 2013.
2. T. Gao, Q. Li and T. Wang, Chemistry of materials, 2005, 17, 887-892.
3. S. Khanchandani, S. Kundu, A. Patra and A. K. Ganguli, The Journal of Physical Chemistry C, 2012, 116, 23653-23662.
4. F. Zhang, Y. Ding, Y. Zhang, X. Zhang and Z. L. Wang, Acs Nano, 2012, 6, 9229-9236.
5. C. L. Qi Cui, Fan Wu, Wenjin Yue, Zeliang Qiu, Hui Zhang, Feng Gao, Wei Shen and Mingtai Wang, J. Phys. Chem. C 2013, 117, 5626-5637.
6. S. Sarkar and D. Basak, ACS applied materials & interfaces, 2015, 7, 16322-16329.
7. J. Liao, P. Guo and Q. Chen, Catalysis Communications, 2016, 77, 22-25.
8. S. T. Tan, A. A. Umar and M. M. Salleh, Journal of Physics and Chemistry of Solids, 2016, 93, 73-78.
9. Q. Wu, F. Huang, M. Zhao, J. Xu, J. Zhou and Y. Wang, Nano Energy, 2016, 24, 63-71.
10. C.-Y. Yeh, Z. Lu, S. Froyen and A. Zunger, Physical Review B, 1992, 46, 10086.
11. T. Tseng and J. Yu, Journal of materials science, 1986, 21, 3615-3624.
12. T. Tseng and J. Lin, IEEE Transactions on Magnetics, 1989, 25, 4405-4408.
13. T. Y. T. K. P. Jayadeven, American Scientific Publishers, Stevenson Ranch, Calif., 2004, 8, 333-376.
14. R. Chen, B. Han, L. Yang, Y. Yang, Y. Xu and Y. Mai, Journal of Luminescence, 2016, 172, 197-200.
15. Y. Wang, X. Yang, Q. Ma, J. Kong, H. Jia, Z. Wang and M. Yu, Applied Surface Science, 2015, 340, 18-24.
16. L. Zhang, Z. Cheng, D. Wang and J. Li, Materials Letters, 2015, 158, 439-441.
17. L. Du, Y. Zhang, Y. Lei and H. Zhao, Materials Letters, 2014, 129, 46-49.
18. Q. An, X. Meng, L. Zhang and Y. Zhao, Materials Letters, 2014, 136, 55-58.
19. Z.-X. Yang, W. Zhong, P. Zhang, M.-H. Xu, Y. Deng, C.-T. Au and Y.-W. Du, Applied Surface Science, 2012, 258, 7343-7347.
20. Z. Zou, C. Xie, S. Zhang, C. Yang, G. Zhang and L. Yang, Sensors and Actuators B: Chemical, 2013, 188, 1158-1166.
21. Y. Cao, P. Hu and D. Jia, Applied Surface Science, 2013, 265, 771-777.
22. B. Ren, M. Cao, Q. Zhang, J. Huang, Z. Zhao, X. Jin, C. Li, Y. Shen and L. Wang, Journal of Alloys and Compounds, 2016, 659, 74-81.
23. F. Chen, R. Zhou, L. Yang, M. Shi, G. Wu, M. Wang and H. Chen, The Journal of Physical Chemistry C, 2008, 112, 13457-13462.
24. H. Over, Y. Kim, A. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante and G. Ertl, Science, 2000, 287, 1474-1476.
25. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science, 2001, 293, 1289-1292.
26. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, science, 2001, 292, 1897-1899.
27. Y. Hao, G. Meng, C. Ye and L. Zhang, Applied Physics Letters, 2005, 87, 033106.
28. K. S. Kim, H. Jeong, M. S. Jeong and G. Y. Jung, Advanced Functional Materials, 2010, 20, 3055-3063.
29. S. Kar and S. Chaudhuri, The Journal of Physical Chemistry B, 2006, 110, 4542-4547.
30. P. G. Chavan, S. S. Badadhe, I. S. Mulla, M. A. More and D. S. Joag, Nanoscale, 2011, 3, 1078-1083.
31. J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim and M.-J. Seong, Journal of Alloys and Compounds, 2016, 659, 38-43.
32. P. Yang and C. M. Lieber, Journal of materials research, 1997, 12, 2981-2996.
33. J. Zhang and L. Zhang, Solid state communications, 2002, 122, 493-496.
34. X. Fan, M.-L. Zhang, I. Shafiq, W.-J. Zhang, C.-S. Lee and S.-T. Lee, Crystal Growth and Design, 2009, 9, 1375-1377.
35. G. Shen and C.-J. Lee, Crystal growth & design, 2005, 5, 1085-1089.
36. G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi and C. J. Lee, The Journal of Physical Chemistry B, 2005, 109, 9294-9298.
37. J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao and Y. Liu, ACS applied materials & interfaces, 2011, 4, 424-430.
38. M. Mahdi, J. Hassan, S. Kasim, S. Ng and Z. Hassan, Materials Science in Semiconductor Processing, 2014, 26, 87-92.
39. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou and K. Chen, The Journal of Physical Chemistry B, 2005, 109, 24268-24272.
40. S. Kar, B. Satpati, P. Satyam and S. Chaudhuri, The Journal of Physical Chemistry B, 2005, 109, 19134-19138.
41. M. Zhang, M. Wille, R. Röder, S. Heedt, L. Huang, Z. Zhu, S. Geburt, D. Grützmacher, T. Schäpers and C. Ronning, Nano letters, 2014, 14, 518-523.
42. M. Ghoul, Z. Braiek, A. Brayek, I. B. Assaker, N. Khalifa, J. B. Naceur, A. Souissi, A. Lamouchi, S. Ammar and R. Chtourou, Journal of Alloys and Compounds, 2015, 647, 660-664.
43. M. Zi, M. Zhu, L. Chen, H. Wei, X. Yang and B. Cao, Ceramics International, 2014, 40, 7965-7970.
44. J. Nie, Y. Mo, B. Zheng, H. Yuan and D. Xiao, Electrochimica Acta, 2013, 90, 589-596.
45. S. Li, D. Meng, L. Hou, D. Wang and T. Xie, Applied Surface Science, 2016, 371, 164-171.
46. B. Ahmed, S. Kumar, S. Kumar and A. K. Ojha, Journal of Alloys and Compounds, 2016, 679, 324-334.
47. Z. Yu, B. Yin, F. Qu and X. Wu, Chemical Engineering Journal, 2014, 258, 203-209.
48. F. Zhang and S. S. Wong, Chemistry of materials, 2009, 21, 4541-4554.
49. N. Qutub, B. M. Pirzada, K. Umar and S. Sabir, Journal of Environmental Chemical Engineering, 2016, 4, 808-817.
50. A. Hernández-Gordillo, V. Rodríguez-González, S. Oros-Ruiz and R. Gómez, Catalysis Today, 2016, 266, 27-35.
51. J. Chao, Z. Xie, X. Duan, Y. Dong, Z. Wang, J. Xu, B. Liang, B. Shan, J. Ye and D. Chen, CrystEngComm, 2012, 14, 3163-3168.
52. Y. Lu, J. Jia and G. Yi, CrystEngComm, 2012, 14, 3433-3440.
53. H. N. Hieu, N. Q. Dung, J. Kim and D. Kim, Nanoscale, 2013, 5, 5530-5538.
54. C. Bao, G. Zhu, J. Yang, M. Liu, R. Zhang and X. Shen, Dalton Transactions, 2015, 44, 1465-1472.
55. Y. Chen, X. Zhang, Q. Tao, W. Fu, H. Yang, S. Su, Y. Mu, L. Zhou and M. Li, RSC Advances, 2015, 5, 1835-1840.
56. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chemical reviews, 2010, 110, 6446-6473.
57. S. K. R. Bera, A. Patra, ACS Appl.Mater.Interfaces, 2015, 7, 13251-13259.
58. Y. Gudage and R. Sharma, Current Applied Physics, 2010, 10, 1062-1070.
59. X. Yang, Q. Yang, Z. Hu, S. Guo, Y. Li, J. Sun, N. Xu and J. Wu, Solar Energy Materials and Solar Cells, 2015, 137, 169-174.
60. C. C. Y. Zheng , Y. Zhan , X. Lin , Q. Zheng , K. Wei , J. Zhu, Y. Zhu, Inorg. Chem., 2007, 46, 6675-6682.
61. F. M. P. C.J. Huang, I.C. Chang, Applied Surface Science, 2012, 263, 345-351.
62. T. Y. L. Y.C. Liang, C.M. Lee, CrystEngComm, 2015, 17, 7948-7955.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊