(3.238.235.155) 您好!臺灣時間:2021/05/11 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張詠茹
研究生(外文):CHANG, YUNG-JU
論文名稱:Ti-15V-3Cr-3Al-3Sn合金於熱氫製程下之顯微結構演變與機械性質變化研究
論文名稱(外文):Investigation of microstructure evolution and mechanical properties of Ti-15V-3Cr-3Al-3Sn alloy during thermohydrogen process
指導教授:黃榮潭
指導教授(外文):Huang, Rong-Tan
口試委員:薛人愷蔡履文
口試委員(外文):Shiue, Ren-KaeTsay, Leu-Wen
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:Ti-15V-3Cr-3Al-3Sn液態熱氫製程晶粒細化
外文關鍵詞:Ti-15V-3Cr-3Al-3Snliquid thermohydrogen processgrain refinement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要針對Ti-15V-3Cr-3Al-3Sn合金(簡稱Ti-15-3)先經液態熱氫製程(thermohydrogen process,簡稱THP)處理之後,研究合金顯微組織在液態熱氫製程各階段的變化演進,並探討其與機械性質變化之關係。另外,為了進一步細化晶粒以及提升對機械性質的影響,而嘗試在熱氫製程前先進行滾軋,藉由結合熱機與熱氫製程的方式,探究細化晶粒之程度與合金之機械性質變化。結果發現Ti-15-3合金於液態滲氫階段(分別滲氫5、10、15、20、25及30小時),在電解充氫時間超過10小時後,過程中因足量的氫原子滲入合金內而擠壓晶格,內應力誘使β相晶粒內會產生ω過渡相之滯熱相轉換(athermal transformation)。液態電解滲氫20小時後,此相轉換之特徵更形明顯,由於氫原子進至β相内充當間隙原子,形成β相溶有過飽和氫原子(βH),並誘發產生相(β+H2→βH+),導致β晶粒內有類似雙晶平行晶界特徵之金相顯微形貌。經由TEM分析,ω相於β相次晶粒內與β相形成交替層狀結構,而且存有(111)β//(0001)ω之方位關係。
Ti-15-3合金液態熱氫製程,在電流5 mA,滲氫20小時後,經760C,5小時氫化處理,最後經780C,1.5小時後,由於晶粒細化以及細長α相於β相晶粒內交錯分布,使其有最佳表面硬度及拉伸強度。此外,Ti-15-3合金以冷加工百分率50%結合熱氫製程之機械性質,由於再結晶使晶粒細化,合金的表面硬度值為307 Hv、抗拉強度為812 MPa。其微觀破斷面中明顯的出現頸縮現象以及韌窩狀組織,這些均為典型塑性破斷特徵。結果,合金材料呈現具高硬度、較佳的拉身強度與延展性。


The research mainly aims to study the microstructural evolution of Ti-15V-3Cr-3Al-3Sn(so-call Ti-15-3) during a liquid thermohydrogen process (so-called THP) as well as the dependence of microstructure and mechanical properties. Besides, in order to further refine grain and enhance the effect on the mechanical properties, cold work rolling before being liquid thermohydrogen processed was also triedout.The effect of combination of thermomechanical plus THP on the degree of grain refinement and the variant of mechanical properties were discussed as well. As Ti-15-3 alloy was carried out liquid THP separately at various hydrogen-charging time (5, 10, 15, 20, 25 and 30 h), the results show that an athermal transformation of ω transitionappeared near the hydrogen-charging surface Ti-15-3 alloy after electrolysis hydrogen-charging was executed over 10 h, in which plenty of hydrogen atoms diffused into the lattice of β phase and then distorted the lattice leading to the stress-inducedωtransition. Following 20 h of electrolysis hydrogen-charging, the feature of the transformation showed much apparently.Because a great deal of hydrogen atoms diffused into the lattice and served as the interstitials, the β phase (βH) dissolving plenty of hydrogen atomsformed and resulted in the stress-induced ω transition (β+H2→βH+). Consequently, the metallography shows the twin-like features, where the parallel subgrain boundaries appeared in the β grains. From TEM analysis, ω phase existed in the subgrain of β phase and formed the alternating layer structure with β phase.Furthermore, there is an orientation relation of (111)β//(0001)ω in the subgrain.
The liquid THP of T-15-3 alloy carried out 20 h electrolysis hydrogen-charging with 5 mA current, followed by 760C hydrogenation treatment for 5 h and then dehydrogenation at 780C for 1.5 h can attain the excellent surface hardness and tensile strength due to the back-weave-like morphology and the grain refinement after the liquid THP. In addition, as forthe Ti-15-3 alloy carried out cold work rolling before being liquid THP, it displayed the surface hardness of 307 Hv and the ultimate tensile strength of 812 MPa due to the grain refinement of recrystallization resulting from the combination effect of thermomechanical process and THP. The macro- and micro-scopic fractographs apparently show the necking and the dimple morphology, which are the distinctive feature of plastic fracture. The processed Ti-15-3 alloyconsequently exhibited high hardness, good ultimate tensile strength and ductility.

致謝 I
摘要 II
Abstract III
表目錄 VII
圖目錄 VIII
第一章、前言 1
第二章、文獻回顧 2
2-1 純鈦及鈦合金介紹 2
2-1-1 質原子對鈦金屬之影響 2
2-1-2 鈦合金的種類 4
2-2 Ti-15V-3Cr-3Al-3Sn合金 5
2-2-1 Ti-15V-3Cr-3Al-3Sn合金相變化 5
2-3 熱機製程 6
2-3-1 熱氫製程 8
2-3-2 液態滲氫製程 9
2-4 化物的介紹 10
2-4-1 氫化物類型 10
2-4-2 氫化物析出 11
第三章、實驗流程與方法 25
3-1 材料前處理 25
3-2 液態充氫製程 25
3-3 熱氫製程 25
3-4 熱機製程 26
3-5 維式硬度測試 26
3-6 拉伸測試 26
3-7 X光繞射分析 26
3-8 掃描式電子顯微鏡 27
3-9 穿透式電子顯微鏡 27
第四章、結果與討論 28
4-1 Ti-15-3合金之液態熱氫製程 29
4-1-1 Ti-15-3合金於不同電解充氫時間下顯微組織之變化 29
4-1-2 Ti-15-3合金於不同氫化時間下以及除氫後之顯微組織變化 30
4-1-3討論 31
4-2 熱機製程結合電解充氫熱氫顯微組織之變化 33
4-3 電解充氫熱氫製程以及結合熱機製程後機械性質之變化 34
4-3-1 於不同電解時間下機械性質之比較 34
4-3-2 熱機製程結合熱氫製程機械性質之比較 35
4-3-3 討論 36
第五章、結論 63
第六章、未來研究方向 64
參考文獻 65

[1] 洪胤庭, "純鈦及鈦合金特性及製程介紹," ed: 中工高雄會刊, 2013.
[2] R. Boyer, H. Rosenberg, R. Boyer, and H. Rosenberg, "Beta Titanium Alloys in the 80’s," TMS-AIME publications, Warrendale, PA, vol. 1, 1984.
[3] W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction vol. 7: Wiley New York, 2007.
[4] S. M. Kazanjian and E. A. Starke, "Effects of microstructural modification on fatigue crack growth resistance of Ti-15V-3Al-3Sn-3Cr," International journal of fatigue, vol. 21, pp. S127-S135, 1999.
[5] F. Froes, D. Eylon, and C. Suryanarayana, "Thermochemical processing of titanium alloys," JOM, vol. 42, pp. 26-29, 1990.
[6] O. Senkov, J. Jonas, and F. Froes, "Recent advances in the thermohydrogen processing of titanium alloys," Jom, vol. 48, pp. 42-47, 1996.
[7] O. Senkov and F. Froes, "Thermohydrogen processing of titanium alloys," International Journal of Hydrogen Energy, vol. 24, pp. 565-576, 1999.
[8] D. Eliezer, N. Eliaz, O. Senkov, and F. Froes, "Positive effects of hydrogen in metals," Materials Science and Engineering: A, vol. 280, pp. 220-224, 2000.
[9] G. Sundararajan and M. Roy, "Solid particle erosion behaviour of metallic materials at room and elevated temperatures," Tribology International, vol. 30, pp. 339-359, 1997.
[10] H. Kestler and H. Clemens, "Production, Processing and Application of γ (TiAl)‐Based Alloys," Titanium and titanium alloys: fundamentals and applications, pp. 351-392, 2003.
[11] O. Karasevskaya, O. Ivasishin, S. Semiatin, and Y. V. Matviychuk, "Deformation behavior of beta-titanium alloys," Materials Science and Engineering: A, vol. 354, pp. 121-132, 2003.
[12] L. Zeng and T. Bieler, "Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α ″and β phases in Ti–6Al–4V wire," Materials Science and Engineering: A, vol. 392, pp. 403-414, 2005.
[13] F. William, "Structure and properties of engineering alloys," McGraw-Hill, Houston, TX, 1993.
[14] E. Fisher and D. Dever, "The Science, Technology and Application of Titanium," Pergamon Press, Oxford, p. 373, 1970.
[15] C. Ouchi, K. Minikawa, K. Takahashi, A. Ogawa, and M. Ishikawa, "Microstructure and mechanical properties relationship of β-rich titanium alloy," NKK Tech Rev, vol. 65, pp. 61-67, 1992.
[16] T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima, "Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process," Materials Science and Engineering: A, vol. 213, pp. 148-153, 1996.
[17] D. Eylon, A. Vassel, Y. Combres, R. Boyer, P. Bania, and R. Schutz, "Issues in the development of beta titanium alloys," JOM Journal of the Minerals, Metals and Materials Society, vol. 46, pp. 14-15, 1994.
[18] G. Welsch, R. Boyer, and E. Collings, Materials properties handbook: titanium alloys: ASM international, 1993.
[19] A. Sherman and S. Seagle, "Torsional properties and performance of beta titanium alloy automotive suspension springs," Beta Titanium Alloys in the 1980's, pp. 281-293, 1983.
[20] R. Boyer, "An overview on the use of titanium in the aerospace industry," Materials Science and Engineering: A, vol. 213, pp. 103-114, 1996.
[21] R. Lederich, S. Sastry, J. O'Neal, W. Kerr, D. Hasson, and C. Hamilton, "Advanced Processing Methods for Titanium," TMS-AIME, Warrendale, p. 115, 1982.
[22] T. Furuhara, T. Maki, and T. Makino, "Microstructure control by thermomechanical processing in β-Ti–15–3 alloy," Journal of Materials Processing Technology, vol. 117, pp. 318-323, 2001.
[23] F. Froes, C. Yolton, J. Capenos, M. Wells, and J. Williams, "The relationship between microstructure and age hardening response in the metastable beta titanium alloy Ti-11.5 Mo-6 Zr-4.5 Sn (beta III)," Metallurgical and Materials Transactions A, vol. 11, pp. 21-31, 1980.
[24] J. Williams and M. Blackburn, "The influence of misfit on the morphology and stability of the omega phase in titanium--transition metal alloys," North American Rockwell Science Center, Thousand Oaks, Calif.1969.
[25] D. De Fontaine, N. Paton, and J. Williams, "The omega phase transformation in titanium alloys as an example of displacement controlled reactions," Acta Metallurgica, vol. 19, pp. 1153-1162, 1971.
[26] S. Nag, R. Banerjee, R. Srinivasan, J. Hwang, M. Harper, and H. Fraser, "ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe β titanium alloy," Acta Materialia, vol. 57, pp. 2136-2147, 2009.
[27] R. Boyer, G. Welsch, and E. Collings, "Materials properties handbook: titanium alloys, 1994," ASM International, Materials Park, OH, vol. 125.
[28] D. Banerjee and J. Williams, "Perspectives on titanium science and technology," Acta Materialia, vol. 61, pp. 844-879, 2013.
[29] N. Niwa, A. Arai, H. Takatori, and K. Ito, "Mechanical Properties of Cold-worked and High-Low Temperature Duplex-aged Ti-15V-3Cr-3Sn-3Al Alloy," ISIJ international, vol. 31, pp. 856-862, 1991.
[30] I. Weiss and S. Semiatin, "Thermomechanical processing of beta titanium alloys—an overview," Materials Science and Engineering: A, vol. 243, pp. 46-65, 1998.
[31] C.-T. Liu, T.-I. Wu, and J.-K. Wu, "Formation of nanocrystalline structure of Ti–6Al–4V alloy by cyclic hydrogenation–dehydrogenation treatment," Materials Chemistry and Physics, vol. 110, pp. 440-444, 2008.
[32] M. Okada, "Strengthening of Ti-15V-3Cr-3Sn-3Al by thermo-mechanical treatments," ISIJ International, vol. 31, pp. 834-839, 1991.
[33] A. Guitar, G. Vigna, and M. Luppo, "Microstructure and tensile properties after thermohydrogen processing of Ti–6Al–4V," Journal of the Mechanical Behavior of Biomedical materials, vol. 2, pp. 156-163, 2009.
[34] V. A. Goltsov, "The phenomenon of controllable hydrogen phase naklep and the prospects for its use in metal science and engineering," Materials Science and Engineering, vol. 49, pp. 109-125, 1981.
[35] T. Veziroǧlu and V. Goltsov, "A new aspect of hydrogen movement," International Journal of Hydrogen Energy, vol. 22, p. 113, 1997.
[36] V. Goltsov, "Hydrogen treatment (processing) of materials: current status and prospects," Journal of alloys and compounds, vol. 293, pp. 844-857, 1999.
[37] U. Zwicker and W. S. Hans, "Process for improving the workability of titanium alloys," ed: Google Patents, 1959.
[38] U. Zwicker, Titan und titanlegierungen vol. 21: Springer-Verlag, 2013.
[39] W. Kerr, P. Smith, M. Rosenblum, F. Gurney, Y. Mahajan, and L. Bidwell, "Hydrogen as an alloying element in titanium (Hydrovac)," Titanium, vol. 80, pp. 2477-2486, 1980.
[40] Y. Mahajan, S. Nadiv, and W. Kerr, "Studies of hydrogenation in Ti 6Al 4V alloy," Scripta Metallurgica, vol. 13, pp. 695-699, 1979.
[41] W. Burgers, "On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium," Physica, vol. 1, pp. 561-586, 1934.
[42] V. Goltsov, "Fundamentals of hydrogen treatment of materials and its classification," International journal of hydrogen energy, vol. 22, pp. 119-124, 1997.
[43] Z. Shaoqing and Z. Linruo, "Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy," Journal of Alloys and compounds, vol. 218, pp. 233-236, 1995.
[44] B. Kolachev, V. Talalaev, Y. B. Egorova, and A. Kravchenko, "Effect of hydrogen on the machinability of VT5-1 alloy by cutting," Materials Science, vol. 32, pp. 753-759, 1996.
[45] W. Kao, L. Orsborn, F. Froes, and J. Smugeresky, "Powder metallurgy of titanium alloys," TMS-AIME, Warrendale, PA, p. 163, 1980.
[46] K. Ameyama, Y. Kaneko, H. Iwasaki, and M. Tokizane, "Injection molding of titanium powders," Advances in powder metallurgy, pp. 121-126, 1989.
[47] C. Yolton, D. Eylon, and F. Froes, "Microstructure Modification of Titanium Alloy Products by Temporary Alloying with Hydrogen," in Sixth World Conference on Titanium. III, 1988, pp. 1641-1646.
[48] D. Eylon, C. Yolton, and F. Froes, "Property Enhancement of Titanium Alloys by Microstructure Modification," in Sixth World Conference on Titanium. III, 1988, pp. 1523-1528.
[49] K. Yang, Z. Guo, and D. Edmonds, "Processing of titanium matrix composites with hydrogen as a temporary alloying element," Scripta metallurgica et materialia, vol. 27, pp. 1695-1700, 1992.
[50] K. Yang, Z. Guo, and D. Edmonds, "Study of the effect of hydrogen on titanium alloy foils to be used as potential composite matrices," Scripta metallurgica et materialia, vol. 27, pp. 1021-1026, 1992.
[51] Z. Guo, J. Li, K. Yang, and B. Derby, "The effect of temporary hydrogenation on the processing and interface of titanium composites," Composites, vol. 25, pp. 881-886, 1994.
[52] J. A. Kargol, N. F. Fiore, and R. J. Coyle, "A model for H-Absorption by metals," Metallurgical Transactions A, vol. 12, pp. 183-191, 1981.
[53] S. C. Cracking, "Hydrogen Embrittlement of Iron Base Alloys, RW Staehle, J," Hochman, RD McCright, JE Slater, eds.(Houston, TX: NACE, 1977).
[54] T. Wu, "Surface Modification of Ti-6A1-4V Alloy by Electrochemical Hydrogenation at 353K," Tatung Journal, vol. 21, pp. 195-200, 1991.
[55] T.-I. Wu and J.-K. Wu, "Surface hardening of Ti-6AI-4V alloy by electrochemical hydrogenation," Metallurgical Transactions A, vol. 24, pp. 1181-1185, 1993.
[56] R. Staehle, "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Unieux, Firminy, June 12-16, 1973," Housron: National Association of Corrosion Engineers, 1977.
[57] L. Gao and B. Conway, "Absorption and adsorption of H in the H 2 evolution reaction and the effects of co-adsorbed poisons," Electrochimica acta, vol. 39, pp. 1681-1693, 1994.
[58] R. N. Iyer and H. W. Pickering, "Mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems," Annual Review of Materials Science, vol. 20, pp. 299-338, 1990.
[59] H. Liu, L. Zhou, P. Liu, and Q. Liu, "Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti–6Al–4V alloy," international journal of hydrogen energy, vol. 34, pp. 9596-9602, 2009.
[60] I. Phillips, P. Poole, and L. Shreir, "Hydride formation during cathodicpolarization of Ti—I. Effect of current density on kinetics of growth and composition of hydride," Corrosion Science, vol. 12, pp. 855-866, 1972.
[61] I. Phillips, P. Poole, and L. Shreir, "Hydride formation during cathodic polarization of Ti—II. Effect of temperature and pH of solution on hydride growth," Corrosion Science, vol. 14, pp. 533-542, 1974.
[62] W. Baukloh and G. Zimmermann, "Wasserstoffdurchlässigkeit von Stahl beim elektrolytischen Beizen," Arch. Eisenhüttenwes, vol. 9, pp. 459-465, 1936.
[63] J. Newman and L. Shreir, "Role of hydrides in hydrogen entry into steel from solutions containing promoters," Corrosion Science, vol. 9, pp. 631-641, 1969.
[64] W. Hu and J.-Y. Lee, "Electrocatalytic properties of Ti 2 Ni/Ni-Mo composite electrodes for hydrogen evolution reaction," International journal of hydrogen energy, vol. 23, pp. 253-257, 1998.
[65] S. Glazkova and S. Bocharova, "Investigation of cathode hydrogenation of titanium alloys in sulfuric acid solution," Chemical and Petroleum Engineering, vol. 26, pp. 372-374, 1990.
[66] H. Numakura, M. Koiwa, H. Asano, H. Murata, and F. Izumi, "X-ray diffraction study on the formation of γ titanium hydride," Scripta metallurgica, vol. 20, pp. 213-216, 1986.
[67] Z. Matysina and D. Shchur, "Phase Transformations α→β→γ→δ→ε in Titanium Hydride TiH x with Increase in Hydrogen Concentration," Russian physics journal, vol. 44, pp. 1237-1243, 2001.
[68] D. Shan, Y. Zong, T. Lu, and Y. Lv, "Microstructural evolution and formation mechanism of FCC titanium hydride in Ti–6Al–4V–xH alloys," Journal of Alloys and Compounds, vol. 427, pp. 229-234, 2007.
[69] L. Luo, Y. Su, J. Guo, and H. Fu, "Formation of titanium hydride in Ti–6Al–4V alloy," Journal of Alloys and Compounds, vol. 425, pp. 140-144, 2006.
[70] 陳文翰, 黃榮潭, and 蔡履文, "溫度效應對 Ti-15V-3Cr-3Al-3Sn 顯微組織及機械性質之研究," in 2010 年海峡两岸材料破坏/断裂学术会议暨第十届破坏科学研讨会/第八届全国 MTS 材料试验学术会议论文集, 2010.
[71] 蔡霈蕎, "Ti-15V-3Cr-3Al-3Sn合金經熱氫製程後機械性質提昇與顯微組織之關係研究," 2012.
[72] 李銘哲, "熱氫製程對Ti-15V-3Cr-3Al-3Sn合金顯微組織變化及機械性質影響研究," 2016.
[73] X. Wang, L. Li, W. Mei, W. Wang, and J. Sun, "Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys," Materials Characterization, vol. 107, pp. 149-155, 2015.
[74] M. Minerals, "Materials Society," Warrendale, Pa, vol. 15086, 1993.
[75] H. Zhang, H. Kou, J. Yang, D. Huang, H. Nan, and J. Li, "Microstructure evolution and tensile properties of Ti–6.5 Al–2Zr–Mo–V alloy processed with thermo hydrogen treatment," Materials Science and Engineering: A, vol. 619, pp. 274-280, 2014.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔