跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭讚慶
研究生(外文):Tsan-Ching Cheng
論文名稱:綠色水泥基材料工程特性之研究
論文名稱(外文):Engineering Properties of Green Cement-based Materials
指導教授:黃 然
指導教授(外文):Ran Huang
口試日期:2016-01-08
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:67
中文關鍵詞:工業副產物滲透性耐久性永續發展
外文關鍵詞:by-product materialspermeabilitydurabilitysustainable development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討利用幾種工業副產物如循環流化床燃燒灰、焚化爐底灰、高爐石粉、矽灰混摻配製成綠色水泥基材料,並探討其力學性質、滲透性、腐蝕行為、孔隙分布與電子顯微鏡微觀觀察等工程特性,藉此驗證此類工業副產物作為水泥基材料與控制性低強度回填材料應用於綠色水泥基材料之可行性。試驗結果發現上述工業副產物依一定程序壓制後可產生卜作嵐活性反應,藉此可用為部分取代水泥之用;而循環流化床燃燒灰亦可作為部分取代細粒料製成控制性低強度回填材料使用,此外,摻加矽灰於鋼纖維混凝土中能有效增強其抗壓強度與抗磨耗性。水泥基材料摻加上述工業副產物製成綠色水泥基材料可提供更優良的力學性質、滲透性、抗腐蝕性並提升微觀結構的緻密程度,妥效使用上述工業副產物對於混凝土工業之永續發展是相當有助益的,也適合做為綠色材料的組成成份。
This study is focus on the utilization of by-product materials included the combination of CFBC ash, WIBA, AIBA, PIBA, IBA, GGBS and silica fume mixed following the designed proportions as green cement-based materials, and the engineered properties included mechanical properties, permeability, corrosion behaviors, pore distribution as well as SEM observation were conducted in order to verify the feasibility of those by-product materials mixtures used as the application of green cement-based materials such as controlled low strength materials. Test results indicate that those by-product materials can be processed by melting to regain reactive pozzolanic activity, which may be used to partially replace cement. And CFBC also can be used to partially replace fine aggregates as controlled low strength materials. In addition, inclusion of silica fume into steel fibers concrete results in a significant increase in compressive strength and abrasion resistance. Cement-based materials containing above-mentioned by-product materials as green cement-based materials display better perfoemance on mechanical properties, permeability, corrosion resistance and denser micro-structure. In conclusion, the utilization of above-mentioned by-product materials is important to sustainable development in concrete industry and is suitable for a composition of green cement-based materials.
CONTENTS

摘要 I
ABSTRACT II
CONTENTS III
LIST OF TABLES VI
LIST OF FIGURES VII
Chapter 1 Introduction 1
1.1 Background and research motivation 1
1.2 Scope of the research 3
1.3 Organization of contents 4
Chapter 2 Influence of melted incinerator ash on durability and corrosion behavior of reinforced concrete 5
2.1 Introduction 5
2.2 Experimental details 6
2.2.1 Material properties 6
2.2.2 Mix proportions 7
2.2.3 Preparation and testing procedure 7
2.3 Results and discussion 10
2.3.1 Fresh properties and chloride content 10
2.3.2 Compressive strength 11
2.3.3 Porosity measurements 13
2.3.4 SEM observation 15
2.3.5 XRD analysis 16
2.3.6 Permeability 18
2.3.7 Corrosion resistance 19
2.3.8 Chloride permeability 20
2.4 Summary 21
Chapter 3 Properties of concrete incorporating bed ash from circulating fluidized bed combustion and ground granulates blast-furnace slag 23
3.1 Introduction 23
3.2 Experimental details 23
3.2.1 Material properties 23
3.2.2 Compressive test 25
3.2.3 Drying shrinkage 25
3.2.4 Mercury porosity 25
3.2.5 SEM observation 25
3.2.6 XRD analysis 25
3.2.7 Initial surface absorption test 26
3.2.8 Corrosion of reinforced concrete 26
3.2.9 Penetrating test of chloride ion 26
3.3 Results and discussion 27
3.3.1 Compressive strength 27
3.3.2 Drying shrinkage 28
3.3.3 Porosity measurements 29
3.3.4 SEM observation 30
3.3.5 XRD analysis 31
3.3.6 Effect on permeability 32
3.3.7 CFBC bed ash effect on corrosion resistance 33
3.3.8 CFBC bed ash effect on chloride permeability 36
3.4 Summary 37
Chapter 4 Controlled Low-Strength Materials Containing Bottom Ash from Circulating Fluidized Bed Combustion 39
4.1 Introduction 39
4.2 Experimental details 40
4.2.1 Material properties 40
4.2.2 Preparation and testing procedure 41
4.3 Results and discussion 42
4.3.1 Properties of fresh CLSM 42
4.3.2 Setting time 43
4.3.3 Bleeding of CLSM 44
4.3.4 Length changes of CLSM 45
4.3.5 Compressive strength 47
4.3.6 Property of permeability 48
4.4 Summary 49
Chapter 5 Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests 50
5.1 Introduction 50
5.2 Experimental details 51
5.2.1 Materials and mix proportion 51
5.2.2 Test methods 51
5.3 Results and discussion 53
5.3.1 Los Angeles abrasion test 53
5.3.2 Water abrasion test 55
5.4 Summary 57
Chapter 6 Conclusions and Recommendations 59
6.1 Conclusions 59
6.2 Recommendations 60
References 61


1. B. Taha, G. Nounu, “Properties of concrete contains mixed colour waste recycled glass as sand and cement replacement”, Construction and Building Materials, Vol. 22, No. 5, pp. 713-720, 2008.
2. L. Evangelista, J.D. Brito, “Mechanical behaviour of concrete made with fine recycled concrete aggregates”, Cement and Concrete Composites, Vol. 29. No. 5, pp. 397-401, 2009.
3. M.S. Chauhan, S.Mittal, B. Mohanty, “Performance evaluation of silty sand subgrade reinforced with fly ash and fibre”, Geotextiles and Geomembranes, Vol. 26, No. 5, pp. 429-435 2008.
4. J. Prabakar, N. Dendorkar, R.K. Morchhale, “Influence of fly ash on strength behavior of typical soils”, Construction and Building Materials, Vol. 18. No. 4, pp. 263-267, 2004.
5. E. A. Kishar, D.A. Ahmed, , M.R. Mohammed, R. Noury, “Effect of calcium chloride on the hydration characteristics of ground clay bricks cement pastes”, Beni-Suef University Journal of Basic and Applied Sciences, Vol. 2, No. 1, pp. 20-30, 2013.
6. B.E.I. Abdelrazig, D.G. Bonner, D.V. Nowell, J.M. Dransfield, P.J. Egan, “The solution chemistry and early hydration of ordinary Portland cement pastes with and without admixtures”, Thermochimica Acta, Vol. 340, pp. 417-430, 1999.
7. D.P. Bentz, P.E. Stutzman, “Evolution of porosity and calcium hydroxide in laboratory concretes containing silica fume”, Cement and concrete research, Vol. 24, pp. 1044-1050, 1994.
8. N.M. Sutan,I. Yakub, M. S. Jaafar, K. A. Matori, S. K. Sahari, “Sustainable nanopozzolan modified cement: characterizations and morphology of calcium silicate hydrate during hydration”, Journal of Nanomaterials, Vol. 2015, Article ID 713258, 6 pages, 2015.
9. B.B. Sabir, S. Wild, J. Bai, “Metakaolin and calcined clays as pozzolans for concrete: a review”, Cement and Concrete Composites, Vol. 23, No. 6, pp. 441-454, 2001.
10. M. López, J.T. Castro, “Effect of natural pozzolans on porosity and pore connectivity of concrete with time”, Revista ingeniería de construcción, Vol. 25, No. 3, pp. 419-431, 2010.
11. PK. Mehta, “Role of cementitious material in sustainable development of the concrete industry”, In: Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Vol. 1, SP-178. Bangkok: V.M. Malhotra, pp. 1-20, 1998.
12. Concrete Society, “Changes in the properties of ordinary portland cement”, Technical report 29, pp. 1-30, 1987.
13. E.J. Anthony, L. Jia, M. Caris, F. Preto, S. Burwell, “An Examination of the Exothermic Natural of Fluidized Bed Combustion (FBC) Residues”, Waste Management Journal, Vol. 19, pp. 293-305, 1999.
14. H.M. Hsu, A.Cheng, S.J. Chao, R. Huang, T.C. Cheng, K.L. Lin, “Controlled Low-Strength Materials Containing Bottom Ash from Circulating Fluidized Bed”, International Journal of Pavement Research and Technology Materials, Vol. 2, No. 6, pp. 250-256, 2009.
15. C.S. Shon, A.K. Mukhopadhyay, D. Saylak, D.G. Zollinger, G.G. Mejeoumov, “Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture”, Construction and Building Materials, Vol. 24, No. 5, pp. 839-847, 2005.
16. J. Brandstetr, J. Havlica, U. Odler, “Properties and use of solid residue from fluidized bed coal combustion, in: S. Chandra (Ed.)”, Waste Materials Used in Concrete Manufacturing,” Noyes Publication, New Jersey: pp. 1-47, 1997.
17. N.M. Jackson, S. Schultz, P. Sander, L. Schopp, “Beneficial use of CFB ash in pavement construction applications”, Fuel, Vol. 88, No. 7, pp.1210-1215, 2009.
18. S. Aykut, B.E. Tuncer, B.S. Md.Sazzad, A.A. Hector, H.B. Craig, “Soft subgrades’ stabilization by using various fly ashes Resources”, Conservation and Recycling, Vol. 46, No. 4, pp. 365-376, 2004.
19. F. Becquart, F. Bernard, N.E. Abriak, R. Zentar, “Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction”, Waste Management, Vol. 29, No. 4, pp. 1320-1329, 2009.
20. M. Izquierdo, X. Querol, A. Josa, E. Vazquez, A. López-Soler, “Comparison between laboratory and field leachability of MSWI bottom ash as a road material”, Science of The Total Environment, Vol. 389, No. 1, pp. 10-19, 2008.
21. P.H. Shih, J.E. Chang, L.C. Chiang, “Replacement of raw mix in cement production by municipal solid waste incineration ash”, Cement and Concrete Research, Vol. 33, No. 11, pp. 1831-1836, 2003.
22. J.R. Pan, C. Huang, J.J. Kuo, S.H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement”,. Waste Management, Vol. 28, No. 7, pp. 1113-1118, 2008.
23. C.R. Cheeseman, A. Makinde, S. Bethanis, “Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash Resources”, Conservation and Recycling, Vol. 43, No. 2, pp. 147-162, 2005.
24. O. Ginés, J.M. Chimenos, A.Vizcarro, J. Formosa, J.R. Rosell, “Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations”, Journal of Hazardous Materials, Vol. 169, No. 1-3, pp. 643-650, 2009.
25. H.S. Shi, L.L. Kan, “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete”, Journal of Hazardous Materials, Vol. 164, No. 2-3, pp. 750-754, 2009.
26. K.L. Lin, “The influence of municipal solid waste incinerator fly ash slag blended in cement pastes”, Cement Concr. Res., Vol. 35, pp. 979-986, 2005.
27. J. Yang, B. Xiao, A.R. Boccaccini, “Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash”, Fuel, Vol. 88, No. 7, pp. 1275-1280, 2009.
28. R. Klein, T. Baumann, E. Kahapka, R. Niessner, “Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management”, Journal of Hazardous Materials, Vol. 83, No. 3, pp. 265-280, 2001.
29. T.C. Lee, C.J. Chang, M.K. Rao, X.W. Su, “Modified MSWI ash-mix slag for use in cement concrete”, Construction and Building Materials, Vol. 25, No. 4, pp. 1513-1520, 2011.
30. A.S. Al-Gahtani, “Effect of curing methods on the properties of plain and blended cement concretes”, Construction and Building Materials, Vol. 25, No. 3, pp. 308-314, 2010.
31. C.C. Yang, S.W. Cho, L.C. Wang, “The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials”, Materials Chemistry and Physics, Vol. 100, No. 2-3, pp. 203-210, 2006.
32. R. Kumar, B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury instruction porosimetry”, Cement and Concrete Research, Vol. 34, pp. 321-328, 2004.
33. M. Şahmaran, İ,Ö. Yaman, M. Tokyay, “Transport and mechanical properties of self consolidating concrete with high volume fly ash”, Cement and Concrete Composites, Vol. 31, No. 2, pp. 99-106, 2009.
34. G.A. Julio-Betancourt, R.D. Hooton, “Study of the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes”, Cement and Concrete Research, Vol. 34, No. 6, pp. 1007-1015, 2004.
35. E.J. Anthony, L. Jia, M. Caris, F. Preto, S. Burwell, “An Examination of the Exothermic Natural of Fluidized Bed Combustion (FBC) Residues”, Waste Management Journal, Vol. 19, pp. 293-305, 1999.
36. J.J. Chang, W. Yeih, C.C. Hung, “Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes”, Cement and Concrete Composites, Vol. 27, pp. 85-91, 2005.
37. A.R. Sakulich, E. Anderson, C. Schauer, M.W. Barsoum, “Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete”, Construction and Building Materials, Vol. 23, pp. 2951-2957, 2005.
38. F. Puertas, M. Palacios, A. Gil-Maroto, T. Vázquez, “Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type”, Cement and Concrete Composites, Vol. 31, pp. 277-284, 2009.
39. C. Shi, R.L. Day, “A calorimetry study of early hydration of alkali–slag cements”, Cement and Concrete Research, Vol. 25, pp. 1333-1346, 2005.
40. E. Mozaffari, J.M. Kinuthia, J. Bai, S. Wild, “An investigation into the strength development of Wastepaper Sludge Ash blended with Ground Granulated Blastfurnace Slag”, Cement and Concrete Research, Vol. 39, No. 10, pp. 942-949, 2009.
41. F. Collins, J.G. Sanjayan, “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete”, Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406, 2000.
42. S. Mindess, J. Francis Young, Davis Darwin, Concrete, 2nd. Ed. Prentice Hall, 2002.
43. A. Oner, S. Akyuz, “An experimental study on optimum usage of GGBS for the compressive strength of concrete”, Cement and Concrete Composites, Vol. 29, No. 6, pp. 505-514, 2007
44. J. Malolepszy and J. Deja, “The influence of curing conditions on the mechanical properties of alkali activated slag binders”, Silic Ind Vol. 11, No. 12, pp. 179-186, 1988.
45. T. Hakkinen, “The microstructure of high strength blast furnace slag concrete”, Nordic Concrete Research, Vol. 11, pp. 67-82, 1992.
46. M. Stern, A. Geary, “Electrochemical polarization”, Journal of Electrochemical Society, Vol. 104, No. 1, pp. 56, 1957.
47. B.S. Haran, B.N. Popov, M.F. Petrou, R.E. White, “Studies on Galvanized Carbon Steel in Ca(OH)2 Solutions”, ACI Materials Journal, Vol. 97 pp. 425-431, 2000.
48. M.D.A. Thomas, M.H. Shehata, S.G. Shashiprakash, D.S. Hopkins, K. Cail, “Use of ternary cementitious systems containing silica fume and fly ash in concrete”, Cement and Concrete Research, Vol. 29, No. 8, pp. 1207-1214, 1999.
49. B.W. Langan, K. Weng, M.A. Ward, “Effect of silica fume and fly ash on heat of hydration of Portland cement”, Cement and Concrete Research, Vol. 32, No. 7, pp. 1045-1051, 2002.
50. A. Cheng, R. Huang, J.K. Wu, C.H. Chen, “Influence of GGBS on durability and corrosion behavior of reinforced concrete”, Materials Chemistry & Physics, Vol. 93, No. 2-3, pp. 404-411, 2005.
51. A. Oner, S. Akyuz, “An experimental study on optimum usage of GGBS for the compressive strength of concrete”, Cement and Concrete Composites, Vol. 29, No. 6, pp. 505-514, 2007.
52. ACI 229R-99. Controlled Low-Strength Materials, 1999.
53. M.A. Gabr, J.J. Bowders, “Controlled low-strength material using fly ash and AMD sludge”, Journal of Hazardous Materials, Vol. 76, No. 2-3, pp. 251-263, 2000.
54. S. Türkel, “Strength properties of fly ash based controlled low strength materials”, Journal of Hazardous Materials, Vol. 147, No. 3, pp. 1015-1019, 2000.
55. S. Bouzalakos, A.W.L. Dudeney, C.R. Cheeseman, “Controlled low-strength materials containing waste precipitates from mineral processing”, Minerals Engineering, Vol. 21, No. 4, pp. 252-263, 2008.
56. E.J. Anthony, L. Jia, M. Caris, F. Preto, S. Burwell, “An Examination of the Exothermic Natural of Fluidized Bed Combustion (FBC) Residues”, Waste Management Journal, Vol. 19, No. 4, pp.293-305, 1999.
57. R.E. Conn, K. Sellakumar, “Proceedings of the 1997 International Conference on Fluidized bed Combustion”, Vol. 1, pp. 507-518, 1997.
58. E.J. Anthony, E.M. Bulewica, K. Dudek, A. Kozak, “The long term behavior of CFBC ash-water systems”, Waste management, Vol. 22, No. 1, pp. 99-111, 2002.
59. G. Sheng, Q. Li, J. Zhai, F. Li, “Self-cementitious properties of fly ashes from CFBC boiler co-firing coal and high-sulphur petroleum coke”, Cement Concrete Research, Vol. 37, No. 6, pp. 871-876, 2007.
60. R.N. Swamy, B. Ammar, “Some engineering properties of slag concrete as influenced by mix proportioning and curing”, ACI Material Journal, Vol. 87, No. 3, pp. 210-220, 1900.
61. F.J. Hogan, J.W. Meusel, “Evaluation for durability and strength development of a ground granulated blast furnace slag”, Cement and Concrete Aggregates, Vol. 3, pp. 40-52, 1981.
62. R. Kumar, B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury instruction porosimetry”, Cement and Concrete Research, Vol. 34, No. 2, pp. 321-328, 2004.
63. E. Horszczaruk, “Abrasion resistance of high-strength concrete in hydraulic structures”, Wear, Vol. 259, No. 1-6, pp. 62-69, 2005.
64. X.B. Huang, Y.Z. Yuan, ”Mechanism and prediction of material abrasion in high-velocity sediment-laden flow”, Journal of Hydrodynamics, Ser. B, Vol. 18, No. 6, pp. 760-764, 2008.
65. Z.J. Grdic, G.A.T. Curcic, N.S. Ristic, I.M. Despotovic, “Abrasion resistance of concrete micro-reinforced with polypropylene fibers”, Construction and Building Materials, Vol. 27, No. 1, pp. 305-312, 2012.
66. N. Kabay, “Abrasion resistance and fracture energy of concretes with basalt fiber”, Construction and Building Materials, Vol. 50, No. 15, pp. 95-101, 2014.
67. X.G. Hu, A.W. Momber, Y.G. Yin, “Hydro-abrasive erosion of steel-fibre reinforced hydraulic Concrete”, Wear, Vol. 253, No. 7-8, pp. 848-854, 2002.
68. S. Serin, N. Morova, M. Saltan, S. Terzi, “Investigation of usability of steel fibers in asphalt concrete mixtures”, Construction and Building Materials, Vol. 36, pp. 238-244, 2012.
69. ACI Committee 234, Guide for the use of silica fume in concrete (ACI 234-06). American Concrete Institute, Farmington Hills, 2006.
70. B. Felekoğlu, S. Türkel, Y. Altuntaş, “Effects ofsteel fiber reinforcement on surface wear resistance of self-compacting repair mortars”, Cement and Concrete Composites, Vol. 29, No. 5, pp. 391-396, 2007.
71. T. Yen, T.H. Hsu, Y.W. Liu, S.H. Chen, “Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete”, Construction and Building Materials, Vol. 21, No. 2, pp. 458-463, 2007.
72. B. Li, G. Ke, M. Zhou, “Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete”, Construction and Building Materials, Vol. 25, No. 10, pp. 3849-3853, 2011.
73. Y.W. Liu, “Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume”, Construction and Building Materials, Vol. 21, No. 5, pp. 972-977, 2007.
74. R. Siddique, “Effect of fine aggregate replacement with Class F fly ash on the abrasion resistance of concrete”, Cement and Concrete Research, Vol. 33, No. 11, pp. 1877-1881, 2003.
75. T.R. Naik, S.S. Singh, M.M. Hossain, “Abrasion resistance of concrete as influenced by inclusion of fly ash”, Cement and Concrete Research, Vol. 24, No. 2, pp. 303-312, 1994.
76. R. Siddique, K. Kapoor, E. Kadri, R. Bennacer, “Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete”, Construction and Building Materials, Vol. 29, pp. 270-278, 2012.
77. I. Ugur, S. Demirdag, H. Yavuz, “Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates”, Materials Characterization, Vol. 61, No. 1, pp. 90-96, 2010.
78. W.T. Lin, A. Cheng, “Abrasion Resistance of Cement-Based Composites”, In: Marcin Adamiak, Editor. Abrasion Resistance of Materials, Rijeka, Croatia: Intech, Croatia, pp. 185-204, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top