跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李家瑨
研究生(外文):Li Chia-Chin
論文名稱:鐵鈷鎳鉻基五元高熵合金之高溫氧化研究
論文名稱(外文):High Temperature Oxidation Behavior of Quinary FeCoNiCr-based High-entropy Alloys
指導教授:開物
指導教授(外文):Kai Wu
口試委員:王朝正黃榮潭黃爾文
口試委員(外文):Wang Chao-JhengHuang Rong-TanHuang Er-Wun
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:鐵鈷鎳鉻基高熵合金拋物線律Al2O3SiO2Mn2O3Mn3O4(MnCr)3O4Cr2O3
外文關鍵詞:FeCoNiCr-based high-entropy alloysparabolic-rate lawAl2O3SiO2Mn2O3Mn3O4(MnCr)3O4Cr2O3
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本研究分三部分探討添加不同元素的三種FeCoNiCr基五元高熵合金,包含FeCoNiCrAl、FeCoNiCrSi及FeCoNiCrMn (以下分別簡稱H5A, H5S及H5M),在不同條件下的氧化行為。其一是探討FeCoNiCr基五元高熵合金在700~ 950oC空氣下恆溫氧化行為,研究結果顯示,三種合金的氧化動力學皆遵守拋物線律,其中,添加Mn的五元高熵合金的氧化速率常數(kp值)皆遠大於其他合金;而添加Si或Al合金的kp值相對較低。由顯微結構分析得知,三種合金氧化後的氧化生成不同的氧化物,其中,H5A生成α-Al2O3及θ-Al2O3,H5S生成Cr2O3及SiO2;而H5M在700~ 800oC外層生成Mn2O3,中間層是生成(Mn,Cr)3O4及Cr2O3,而內層只有Cr2O3,但在900~ 950oC外層則生成Mn3O4,其他層與低溫相似。推測生成SiO2及Al2O3是五元含矽及鋁高熵合金的氧化速率遠低於五元含錳高熵合金的主因。第二部分是探討H5M合金在950oC不同氧分壓(Po2 = 10-4 ~ 1 atm)下的氧化行為。研究結果顯示,合金在所有氧分壓下的氧化動力學皆遵守拋物線律,且其氧化速率常數(kp值)隨氧分壓增加而加快,並得知帶兩或三價的含錳及鉻離子之外擴散是主導整個氧化反應的因子。最後一部分則探討FeCoNiCr基五元高熵合金在700~ 900oC空氣下循環氧化行為,其研究結果顯示,三種合金氧化速率由慢到快依序為H5S合金最慢,H5A合金次之,而H5M合金最快,此結果跟恆溫氧化略微不同,這與氧化後生成的氧化物有關。由顯微結構分析得知,H5A合金以生成-Al2O3為主,並有少量的-Al2O3,但因應力的影響導致部分氧化層剝落,在剝落處有FeAl2O4生成;H5S合金以生成Cr2O3為主,並有少量的-SiO2;而H5M合金生成三層氧化層,其組成結構和恆溫氧化時所得相同。
The main goal of this thesis is to investigate high temperature oxidation of three quinary FeCoNiCr-based high entropy alloys (HEAs), containing FeCoNiCrAl (H5A), FeCoNiCrSi (H5S), and FeCoNiCrMn (H5M) in various tested conditions.
First of all, the oxidation behavior of all the HEAs was studied at 700~ 950oC in dry air. In general, the oxidation kinetics of all the alloys followed the parabolic rate law, and the oxidation rate constants (kp values) of the alloys were strongly dependent on alloy composition. It was found that the Mn-additional alloy revealed the fastest oxidation rates over the temperature range of interest, while the kp values of the Si- and Al-additional alloys were nearly identical and much lower with respect to those of H5M. The scales formed on the H5A alloy consisted of α-Al2O3and θ-Al2O3, while Cr2O3 and SiO2 were detected on the H5S alloy. In addition, triplex scales formed on the H5M alloy, consisted of an exclusive outer-layer of Mn2O3 and an intermediate- layer of (Mn,Cr)3O4 and Cr2O3, and an exclusive inner-layer of Cr2O3 at 700~ 800oC. Triplex scales also formed on the same alloy at 900~ 950oC consisted of an exclusive outer-layer of Mn3O4 and the intermediate and inner-layers are similar to those at lower temperatures. The formation of Al2O3 and SiO2 was responsible for the lower oxidation rates of Al- and Si-containing alloys, as compared to those of the H5M alloy.
Secondly, the oxidation behavior of H5M was further studied in four oxygen-containing atmospheres over the oxygen partial pressure range from 10-4 to 1atm at 950 oC. The oxidation kinetics of the alloy followed the parabolic rate law, and the kp values increased with increasing oxygen partial pressure. Triplex scales also formed on the alloy regardless of oxygen pressure, having the same scale constitution and phases described in dry air.
Finally, the cyclic oxidation behavior of all the HEAs was systematically studied at 700~ 900oC in dry air. The results showed that the cyclic-oxidation kinetics of the HEAs followed by the fast to slow rank of H5M > H5A > H5S. The scales formed on the H5A alloy consisted of α-Al2O3and θ-Al2O3, however a minor amount of FeAl2O4 was observed beneath the spalled alumina scales, while those formed on the H5S and H5M alloys remained unchanged as those in the isothermal oxidation.

摘要 I
Abstract II
目錄 III
表目錄 IV
圖目錄 V
一、前言 1
二、文獻回顧 6
2.1等莫耳(高熵)合金的定義 6
2.2高熵合金的相關研究回顧 6
2.3高熵合金之熱力學 9
三、實驗步驟 23
3.1 合金製備: 23
3.2 氧化實驗 24
3.3 試片分析 24
四、結果 32
4.1 合金原材的顯微組織 32
4.2 氧化動力學 33
4.3 顯微結構分析與相組成分析 34
4.4白金指標 36
4.5 短時間氧化 37
五、討論 74
5.1 合金恆溫氧化的特性 74
5.2 合金於不同氧分壓下的氧化特性 76
5.3 合金循環氧化的特性 78
六、結論 82
參考文獻 83

1.C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shung, Material Science and Engineering A, Vol. 35, p. 1465 (2004).
2.蘇明德,科學發展,443期,第46頁,2009年。
3.K. H. Huang, Master's thesis, National TsingHua University, (1996).
4.J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. T. Shun, C. H. Tsau, and S. Y. Tsau, Advanced Engineering Materials, Vol. 6, p. 299 (2004).
5.J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Materials Science Forum,
Vol. 560, p. 1 (2007).
6.J. W. Yeh, Annales de Chimie - Science des Matériaux, Vol. 31, p. 633 (2006).
7.J. W. Yeh, International Journal of Engineering Science, Vol. 27, p. 1 (2011).
8.W. Kai, W.L. Jang, R.T. Huang, C.C. Lee, H.H. Hsieh, and C.F. Du, Oxidation of Metals, Vol. 63, p. 3 (2004).
9.P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Robert E. Krieger, Malabar, Florida, (1983).
10.許祐睿,國立台灣海洋大學材料工程研究所,碩士論文2004年。
11.A.J.B. Vincent, BSc Part II Thesis, University of Sussex, UK, (1981).
12.K. Fitzner, Calphad, Vol. 5, p. 239 (1981).
13.黃寒青,國立台灣海洋大學材料工程研究所,碩士論文2006年。
14.朱光柏,國立臺灣海洋大學材料工程研究所,碩士論文2015年。
15.G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George, Oxidation of Metals, Vol. 85, p. 629-645 (2016).
16.洪育德,國立台灣清華大學材料工程研究所,碩士論文2001年。
17.H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Materials Science Engeineering B, Vol.163, p. 184 (2009).
18.Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Journal of alloys and compound, Vol. 488, p. 57 (2009).
19.T.M. Butler, J.P. Alfano, R.L. Martens, M.L. Weaver, Jounal of Metals Vol. 16,
p. 246 (2015).
20.P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Advanced Engineering Materials, Vol. 6, p. 74 (2004).
21.R.D. Gaskell, Introduction to the Thermodynamics of metals, 4th Edition, Taylor & Francis (2003).
22.葉均蔚,華岡工程學報第27期,第1頁,2001年。
23.J.W Yeh and R.K. Chen, Science Development, Vol. 377, p. 16 (2004).
24.ASTM Standard E112-12, ASTM USA p. 1 (2012) .
25.P. Kofstad, High temperature corrosion (Elsevier publishing company, London 1988).
26.D.H. Speidel and ArnulfMuan, Journal of the American Ceramic Society, Vol.46, p. 577 (1963).
27.B. C. Lippens and J. J. Steggerda, Physical and Chemical Aspect of Adsorbent and Catalysis, Linsen B. G., Ed. Academic Press, New York, p. 171 (1970).
28.D. Caplan and M. Cohen, Journal of The Electrochemical Society, Vol. 108,
p. 438 (1961).
29.A.E. Paladino and W.D. Kingery, Journal of Chemical Physics, Vol. 37, p. 957 (1962).
30.M. Cekada, M. Panjan, D. Cimpric, J. Kovac, P. Panjan, J. Dolinsek, and A. Zalar, Vacuum, Vol. 84, p. 147 (2010).
31.H. Wei, H. Y. Zhang, X.F. Sun, M.S. Dargusch, and X. Yao, Journal of Alloys and Compounds, Vol. 493, p. 507 (2010).
32.H.W. Allison and H. Samelson, Journal of Applied Physics, Vol. 30, p. 1959 (1419).
33.I. Barin, Thermochemical Data of Pure Substance, 3rd Edition, Weinheim, New York (1995).
34.W.S. Chen, W. Kai, L.W. Tsay, J.J. Kai, Nuclear Eng. & Design, Vol. 272, p. 92 (2014).
35.R.E. Lobnig, H.P. Schmidt, K. Hennesen, H.J. Grabke, Oxidation Metal, Vol. 37, p. 81 (1992).
36.N.K. Othman, J. Zhang, and D.J. Young, Corrosion Science, Vol. 52, p. 2827 (2010).
37.F. Lang, Z. Yu, S. Gedevanishvili, S. C. Deevi, and T. Narita, Intermetallics, Vol. 12, p. 451 (2004).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top