(3.238.130.97) 您好!臺灣時間:2021/05/15 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳星彤
研究生(外文):Chen, Sing-Tung
論文名稱:各種強塑劑對透水混凝土性質影響之研究
論文名稱(外文):A study of the influences of superlasticizers on the properties of pervious concrete
指導教授:張建智
指導教授(外文):Chang, Jiang-Jhy
口試委員:張建智葉為忠張大鵬李賢華徐輝明莊淇銘
口試委員(外文):Chang, Jiang-JhyYeih, Wei-ChungChang, Ta-PengLee, Hsien-HuaHsu, Hui-MiChung, Chi-Ming
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:透水混凝土羧酸萘磺酸木質酸強塑劑最佳用量
外文關鍵詞:pervious concretepolycarboxylic acid sodium saltsulphonated naphthalene formaldehyde condensatemodified lignosulfonatedoptimal amount of superplasticizers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著地球氣候異常,都市熱島效應及因大雨排水不及造成淹水之問題,可應用透水混凝土於陸地舖面上,讓雨水有效的滲透至地面,改善路面排水、使基材保水、幫助城市溫度的調節。透水混凝土容易被水灰比及強塑劑用量影響,水灰比及強塑劑用量低造成工作性不佳,水灰比及強塑劑用量高卻會使透水混凝土造成垂流現象讓透水混凝土喪失透水性能。緣此,本研究的配比使用了過去研究發現的透水速率較好的0.25水灰比,抗壓強度高的90%漿體量及一分半的天然石,搭配市面上常用的羧酸、萘磺酸及木質酸,使用不同的劑量,研究出最佳的強塑劑用量。
由試驗結果顯示三種強塑劑中,羧酸高分子聚合物的漿體分散效果最佳,只需添加一定用量後就可以達到9cm的坍度,且不會有垂流現象。無論使用何種強塑劑之組別,其透水係數均隨著添加量的增加而有下降之趨勢。主要原因為當使用量增加時,其流動性變佳而使得會有部份的漿體堵塞住部份原本可連通之孔隙。改良式磺化木質素在四種添加量的連通孔隙率相差不大,連通孔隙率比羧酸高分子聚合物、磺酸化荼甲醛聚合物的最低添加量差不多,這表示改良式磺化木質素對水泥漿體的分散效果沒有羧酸高分子聚合物、磺酸化荼甲醛聚合物來得好。無論使用何種強塑劑之組別,其抗壓強度在添加量關係上,卻並非是隨著添加量增加而有增大之趨勢,不同的強塑劑,造成最佳強度的最佳用量都不同,唯有磺化木質素,其添加量的多寡對抗壓強度之影響不明顯。而於添加量均在相同的條件下,可得知以羧酸之使用可獲致較高之強度,其值為20.03MPa,其原因可能與其成份不同而造成此現象有關。

As the extreme weather happens frequently nowadays, heat island effect for urban region and flood control problem during heavy rainy period become important issues. The pervious concrete can be applied in pavement to allow water penetrate the pavement and help the flood control, water conservation, temperature regulation. The performance of pervious concrete will be affected by the water/cement ratio and the amount of superplasticizer. When the water/cement ratio and/or the amount of superplasticizer are low, it may result in low workability and possibly low compressive strength. On the other hand, when the water/cement ratio and/or the amount of superplasticizer are high it may result in sag problem which may reduce the permeability as well as strength. In this study, the experience of our previous effort is considered. The water/cement ratio was selected as 0.25, the aggregate size was 0.24-0.48 cm, and the filled percentage of voids by binder was 90%. Three superplasticizers including polycarboxylic acid sodium salt (PCA), sulphonated naphthalene formaldehyde condensate (SNF) and modified lignosulfonated (MLS) were used and different amounts were considered. The goal of this study is to find the optimal amount of superplasticizers.
The results revealed that among these three superplasticizers the performance of PCA was the best, the pervious concrete made with appropriate addition of PCA (by weight of cement) could reach 9-cm slump and no sag phenomenon happened. No matter which kind superplasticizer was used, the water permeability of pervious concrete decreased as the amount of superplasticizer increased, indicating that the fluidity of cement paste was enhanced as the amount of superplasticizer increased which resulted in sag problem and consequently reduced the water permeability. For four addition amounts of MLS, the connected porosity did not vary much and the value was similar to that made with lowest addition amount for PCA and SNF. This result showed that the dispersion effect of MLS is not apparent as that of PCA and SNF. For all superplasticizers, the compressive strength of pervious concrete did not increased as the addition amount of superplasticizer increased. Different superplasticizers have different optimal addition amount. The amount of MLS did not affect the compressive strength significantly. When the amount of superplasticizer was fixed at the same amount, pervious concrete made with PCA had highest compressive strength (20.03 MPa), the reason might come from the different mechanism and composition of superplasticizers.

中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的及範圍 3
1-3 研究方法與流程 3
第二章 文獻回顧 5
2-1 前言 5
2-2 透水混凝土之定義 5
2-3 透水混凝土之組成 7
2-3-1 粗粒料 7
2-3-2 水泥 8
2-3-3 摻劑 13
2-4 透水混凝土之相關研發 13
2-5 透水混凝土的應用 16
2-5-1 透水鋪面常見形式[40] 16
2-5-2 國內透水鋪面案例[41] 21
2-5-3 國外透水鋪面案例[11] 32
第三章 試驗計畫 36
3-1 試驗變數 36
3-1-1 粒料種類及粒徑 36
3-1-2 水灰比 39
3-1-3 漿體填充粒料孔隙體積百分比 39
3-1-4 水泥 40
3-1-5 強塑劑 41
3-2 配比設計 43
3-2-1 試驗配比 43
3-2-2 配比設計 44
3-3 試驗方法 45
3-3-1 試體製作 45
3-3-2 坍度試驗 48
3-3-3 透水係數試驗 49
3-3-4 連通孔隙率試驗 51
3-3-5 抗壓強度試驗 51
第四章 結果與分析 53
4-1 坍度試驗 54
4-2 透水係數試驗 55
4-3 連通孔隙率試驗 58
4-4 抗壓強度試驗 60
4-5 強塑劑使用於低水灰比透水混凝土之劑量分析 69
第五章 結論與建議 78
5-1 結論 78
5-2 建議 78
參考文獻 80
謝誌 83


[1] 黃兆龍,“混凝土性質與行為”, 詹氏書局,1999.
[2] 陳豪吉、林建國,「輕質磚之配比及工程性質研究」,興大工程學刊,第13卷,第3期,11月,2002。
[3] 楊雅雲,“輕質骨材抗壓磚之透水性研究”,國立成功大學土目工程研究所,九十三年六月。
[4] 鄭瑞濱、潘昌林,透水性舖面介紹,WERC水環研究中心,2001。
[5] 楊靜,「建築材料與人居環境」,施普林格出版社,清華大學出版社,2001.9。
[6] 張文澤,電腦輔助建築製圖能力本位訓練教材認識水泥,中華民國職業訓練研究發展中心,九十年十二月。
[7] http://www.taiwancement.com/#Product_2_1_1_1,台灣水泥2016.7。
[8] https://ir.nctu.edu.tw/bitstream/11536/80791/8/680608.pdf,水泥之水化反應2016.7。
[9] Schokker AJ. The sustainable concrete guide – strategies and examples. U.S. Green Concrete Council; 2010.
[10] Marolf A, Neithalath N, Sell E, Wegner K, Weiss J, Olek J. Influence of aggregate size and gradation on acoustic absorption of enhanced porosity concrete. ACI Mater J 2004; 101(1): 82-91.
[11] Park SB, Seo DS, Lee J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem Concr Res 2005; 35(9): 1846-1854.
[12] Haselbach LM, Valavala S, Montes F. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems. J Environ Manage 2006; 81(1): 42–49.
[13] Neithalath N, Sumanasooriya MS, Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 2010; 61(8): 802–813.
[14] Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Constr Build Mater 2011; 25(1): 4294-4298.
[15] Bentz DP. Virtual pervious concrete: microstructure, percolation, and permeability. ACI Mater J 2008; 105(3): 297-301.
[16] Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Constr Build Mater 2011;25(11): 4294–4298.
[17] Putman BJ, Neptune AI. Comparison of test specimen preparation techniques for pervious concrete pavements. Constr Build Mater 2011; 25(8): 3480–3485.
[18] Safiuddin M, Hearn N. Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete. Cem Concr Res 2005; 35(5) :1008–1013.
[19] Fujiwara H, Tomita R, Okamoto T, Dozono A, Obatake A. Properties of high-strength porous concrete, ACI SP-179 1998; 173-188.
[20] Kim HK, Lee HK. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl Acoust 2010; 71(7): 607-615.
[21] Tho-in T, Sata V, Chindaprasirt P, Jaturapitakkul C. Pervious high-calcium fly ash geopolymer concrete, Constr Build Mater 2012; 30:366-371.
[22] Gesoğlu M, Güneyisi E, Khoshnaw G, İpek S. Investigating properties of pervious concrete containing waste tire rubbers. Constr Build Mater 2014; 63:206-213.
[23] Gesoğlu M, Güneyisi E, Khoshnaw G, İpek S. Abrasion and freezing-thawing resistance of pervious concrete containing waste rubber. Constr Build Mater 2014; 73: 19-24.
[24] Kuo W-T, Liu C-C, Su D-S. Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cem Con Comp 2013; 37: 328-335.
[25] Cheng A, Hsu H-M, Chao S-J, Lin K-L. Experimental study on properties of pervious concrete made with recycled aggregate. Int J Pavement Res and Tech 2011; 4: 104-110.
[26] Park SB, Tia M. An experimental study on the water-purification properties of porous concrete. Cem Con Res 2004; 34(2): 177-184.
[27] Huang B, Wu H, Shu X, Burdette EG. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr Build Mater 2010; 24(5): 818-823.
[28] Crouch LK, Pitt J, Hewitt R. Aggregate effects on pervious Portland cement concrete static modulus of elasticity. J Mater Civ Eng 2007; 19(7): 561-568.
[29] Chindaprasirt P, Hatanaka S, Mishima N, Yuasa Y, Chareerat T. Effects of cement paste strength and aggregate size on the compressive strength and void ratio of porous concrete. Int J Min Met Mater 2009; 16(6): 714-719.
[30] Chindaprasirt P, Hatanaka S, Chareerat T, Mishima N, Yuasa Y. Cement paste characteristics and porous concrete properties. Constr Build Mater 2008; 22(5):894-901.
[31] Wu H, Huang B, Shu X, Dong Q. Laboratory evaluation of abrasion resistance of Portland cement pervious concrete. J Mater Civ Eng 2010; 23(5): 697-702.
[32] Shu X, Huang B, Wu H, Dong Q, Burdette E G. Performance comparison of laboratory and field produced pervious concrete mixtures. Constr Build Mater 2011; 25(8): 3187-3192.
[33] Dong Q, Wu H, Huang B, Shu X, Wang K. Investigation into laboratory abrasion test methods for pervious concrete. J Mater Civ Eng 2012; 25(7):886-892.
[34] Yang J, Jiang G. Experimental study on properties of pervious concrete pavement materials. Cem Concr Res 2003; 33: 381-386.
[35] Rojas MF, Sánchez de Rojas MI. Chemical assessment of the electric arc furnace slag as construction material: expansive compounds. Cem Concr Res 2004; 34: 1881-1888.
[36] Maslehuddin M, Sharif AM, Shameem M, Ibrahim M, Barry MS. Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 2003; 17:105-112.
[37] Manso JM, Polanco JA, Losañez, González JJ. Durability of concrete made with EAF slag as aggregate. Cem Concr Comp 2006; 28: 528-534.
[38] Yeih W, Fu TC, Chang JJ, Huang R. Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates. Constr Build Mater 2015; 93: 737-745.
[39] 孔家駿,低水灰比高強度透水混凝土之研究,國立臺灣海洋大學河海工程學系碩士論文,2014.07。

[40] 周祖珍,基地透水鋪面之工法與案例,102年度總合治水工程研習會,2013.03。
[41] 鄭光炎,德奧生態工法技術考察-透水性鋪面,日本、德國、奧地利生態工法技術考察心得發表會,2004.1.13。
[42] https://sites.google.com/site/b9805136/qiang-su-ji-zhong-lei,強塑劑總類2016.07。
[43] 牧保峯,「羧酸強塑劑應用於混凝土」,強塑劑於混凝土應用,pp.1-26,台灣營建研究院,2001.04。
[44] https://sites.google.com/site/pinzhikongzhib9805115/jie-lun-1,減水劑元素2016.07。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top