跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊貽如
研究生(外文):Yang, Linsy
論文名稱:光合生物電化學系統去除氨氮之研究
論文名稱(外文):Ammonia removal by phototrophic bioelectrochemical systems
指導教授:李志源李志源引用關係
指導教授(外文):Lee, Chi-Yuan
口試委員:邱應志劉文得
口試委員(外文):Chiu, Ying-ChihLiu, Wen-Der
口試日期:2016-01-29
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:光合生物電化學系統氨氮硝化作用藻類
外文關鍵詞:phototrophic bioelectrochemicalammonianitrificationalgae
相關次數:
  • 被引用被引用:2
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
水環境中主要污染物為氨氮,應仔細控制以避免造成富營養化,這些污染物被排放到水域前需要妥善的處理。在本研究中,以兩個新型光合生物電化學(PBEC)系統(R1和R2),將合成廢水和之添加氨氮之湖庫水作為進流,檢測其去除氨氮和產電之性能。兩個PBEC系統皆相同,不使用質子交換膜,具有之尺寸為430 mL的陽極槽和陰極槽6700 mL,進流量為1.5 L/d。R1進水氨氮濃度為1.5 mg/L(相當於負荷率5.3 g/m3.d)和R2為15 mg/L(負荷率50.3 g/m3.d)。連續操作130天後,此PBECs顯示具有良好的氨氮去除率,但產電不佳。具體而言,R1能去除100%氨氮而R2去除69%氨氮。庫侖效率R1為0.02%和R2 0.003%。質量平衡計算顯示,氨氮的去除主要是由硝化作用完成,佔69%,產電僅佔0.02%的氨氮去除率,而硝化細菌吸收4%氨,以及微藻吸收18%氨。在陰極槽生長的微藻能提供足夠的氧氣進行硝化作用,如在R2中藻類供氧量為5.3g/m3-d,可取代傳統使用的機械曝氣。此外,懸浮生長微生物去除33%之氨氮,而附著生長去除67%。本研究指出PBEC系統可用於處理含氨氮之廢水,但是未來研究應提高負荷率,以增加其應用潛力。


關鍵字:光合生物電化學系統、氨氮、硝化作用、藻類

Ammonia nitrogen being a major pollutant in water environment should be carefully controlled to avoid causing eutrophication, which requires proper treatment before the pollutant is disposed to water body. In this study, two novel phototrophic bioelectrochemical, (PBEC) systems (R1 and R2) were examined for their performance in removing ammonia nitrogen and electricity generation while synthetic wastewater and lake water amended with ammonia were used as influent. The two identical PBEC systems were constructed without using proton exchange membrane, having dimensions of anode chamber 430 mL and cathode chamber 6700 mL, and were discharged with influent flow rate of 1.5 L/day. The ammonia nitrogen concentration in influent to R1 was 1.5 mg/L (equivalent to loading rate 5.3 g/m3.d) and to R2 was 15 mg/L (loading rate 50.3 g/m3.d). After continuous operation for over 130 days, these PBECs show good efficiency in ammonia removal but poor electricity generation. Specifically, the R1 removed 100% of ammonia nitrogen whereas R2 removed 69% of nitrogen. The Columbic efficiency for R1 was 0.02% and for R2 0.003%. Mass balance calculation indicated that ammonia nitrogen removal was accomplished mostly by nitrification, accounting for 69%. The electricity generation only accounted for 0.003 % of ammonia nitrogen removal, whereas the nitrifiers uptake 4% ammonia, and the microalgaes uptake 18% of ammonia. The microalgae grown in cathode chamber supplied sufficient oxygen for nitrification, e.g., 5.3 g/m3-d in R2, which can substitute for the mechanical aeration that conventionally employed. Furthermore, the suspended growth contributes 33% in removing ammonia and attached contributes 67%. This study suggests that PBEC is feasible to be used in treating wastewater containing ammonia nitrogen, but future research should be conducted to explore potential by increasing the loading rate.


Keyword:phototrophic bioelectrochemical、ammonia、nitrification、algae

摘要 I
Abstract II
目次 III
圖目次 V
表目次 VI
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究內容及架構 2
第二章 文獻回顧 4
2-1 傳統氨氮去除法 4
2-2生物電化學系統介紹 6
2-3 光生物電化學系統 7
2-4光合生物電化學系統去除氨氮 8
第三章 材料與方法 9
3-1 實驗材料 9
3-1.1 光生物電化學系統 9
3-1.2 電極材料 11
3-1.3 活性碳 11
3-1.4 微生物來源 11
3-1.5 燃料配製 11
3-1.6 陰極槽之藻類 11
3-2 實驗方法 12
3-2.1 組裝步驟 12
3-2.2 操作方法 12
3-3 實驗內容 12
3-4 分析原理與儀器設備 13
3-4.1 電壓 13
3-4.2 產電效能分析 13
3-4.3 各式水質分析 14
3-4.4 實驗儀器設備 16
第四章 研究結果 17
4-1電位變化 19
4-2 水質處理效果 22
4-3 溶氧、pH、太陽光照與葉綠素變化 26
4-4 庫倫效率 30
4-4.1電位變化 30
4-4.2 Ammonia去除量與庫倫效率 30
4-5 系統氮平衡 39
4-6 藻類供氧速率 40
4-7 懸浮生長與附著生長 41
4-8討論 45
第五章 結論 47
參考文獻 48


Cai, P.J., Xiao, X., He Y.R., Li, W.W., Zang, G.L., Sheng, G.P., Lam, M.H.W., Yu, L., Yu, H.Q., 2013. Reactive oxygen species (ROS) gemerated by cyanobacteria act as anelectron accetor in the biocathode of a bio-electrochemical system. Biosensors and Bioelectronics. 39, 306-310.
Clauwaert, P., Rabaey, K., Ablterman, P., De Schamphelaire, L., Pham, T.H., Boeckx, P., Boon, N., Verstraete, W., 2007. Biological denitrification in microbial fuel cells, Environmental Science & Technology 41, 3354-3360.
Clauwaert, P., van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., Verstraete, W., 2007. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science & Technology 41, 7564-7569.
De-Bashan, L.E., Moreno, M., Hernandez, J.P., Bashan, Y., 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae chlorella vulgaris co-immobilized in alginate beads with the microalgae growth-promoting bacterium azospirillum brasilense. Water Research 36, 2941-2948.
Gonzalez, C., Marciniak, J., Villaverde, S., Leon, C., Garcia, P.A., Munoz, R., 2008. Efficient nutrient removal from swine manure in a tubular biofilm photobioreactor using algae–bacteria consortia. Water Science and Technology 58 (1), 95–102.
Grobbelaar, J.U., 2009. Factors governing algal growth in photobioreactors: th‘‘open” versus ‘‘closed” debate. Journal of Applied Phycology 21, 489–492.
He, Z., Angenent, L.T., 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18, 2009-2015.
He, Z., Kan, J., Mansfeld, F., Angenent, L.T., Nealson, K.H., 2009. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci.Technol. 43, 1648-1654.
Jadhav, D.A., Ghangrekar, M.M., 2015. Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Enviromental Technology Vol. 36, No 6, 767-775.
Karya, N.G.A.I., Steen, N.P.V.D., Lens, P.N.L., 2013. Photo-oxygenation to support nitrification in an algal–bacterial consortium treating artificial wastewater. Bioresource Technol. 134, 244-250.


Lee,C.Y., Lin, Y.H., 2015. The electricity generation in microbial fuel cells using reaeration mechanism for cathodic oxygen reduction. Civil & Environmental Engineering. Vol. 5.
Mazzuca Sobczuk, T., Garcia Camacho, F., Camacho Rubio, F., Acien Fernandez, F.G., Molina Grima, E., 2000. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67, 465-475.
Menger-Krug, E., Niederste-Hollenberg, J., Hillenbrand, T., Hiessl, H., 2012. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environmental Science & Technology 46, 11505-11514.
Munoz, R., Guieysse, B., 2006. Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Research 40, 2799–2815.
Melis, A., 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Science 177, 272–280.
Oh, S., Min, B., Logan, B.E., 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology 38, 4900-4904.
Oon, Y.L., Ong, S.A., Ho, L.N., Wong, Y.S., Oon, Y.S., Lehl, H.K., Thung, W.E., 2015. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology 18, 270-275.
Oswald, W.J., Gotaas, H.B., Ludwig, H.F., Lynch, V., 1953. Algae symbiosis in oxidation pons: II. Growth characteristics of chlorella pyrenoidosa cultured in sewage. Sewage and Industrial Wastes 25, 26-37.
Reitan, K.I., Rainuzzo, J.R., Olsen, Y., 1994. Effect of Nutrient Limitation on Fatty acid and lipid content of Marine Microalgael. Journal of Phycology 30, 972-979.
Richmond, A., 2004. Handbook of microalgal culture: biotechnology and applied phycology. John Wiley and Sons.
Rittmann, B.E., McCarty, P.L., 2001. Environmental biotechnology : principles and applications. McGRAW-HILL.
Stenstrom, M.K., Rosso, D., 2008. Aeration and mixing. In: Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D. (Eds.), Biological wastewater treatment, IWA Publishing, London.
Suen, Y., Hubbard, J.S., Holzer, G., Tornabene, T.G., 1987. Total lipid production of the green alga nannochloropsis sp. QII under different nitrogen regimes. Journal of Phycology 23,289-296.

Ter Heijne, A., Strik, T. B., David, P. B., Hamelers, H.V.M., Buisman, C.J.N., 2010. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environmental Science & Technology 44, 7151-7156.
Turpin, D.H., 1991. Effects of inorganic availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27, 14-20.
Walker, D.A., 2002. The Z-scheme – down hill all the way. Trends in Plant Science 7, 183–185. Walker, D.A., 2009. Biofuels, facts, fantasy and feasibility. Journal of Applied Phycology 21, 509–517.
Xiao, L., Young, E.B., Berges, J.A., He, Z., 2012. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environmental Science & Technology 46, 11459-11466.
Xu, B., 2015. Microbial fuel cells coupled with open pond for wastewater treatment: is it viable? Masters Theses, Virginia Polytechnic Institute and State University, Blacksburg, VA.
You, S.J., Ren, N.Q., Zhao, Q.L., Kieiy, P.D., Wang, J.Y., Yang, F.L., Fu, L., Peng, L., 2009. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosensors and Bioelectronics 24, 3698-3701.
Zhang, F., He, Z., 2012. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. J Chem Technol Biotechnol 87, 153-159.
Zhang, Y., Noori, J.S., Angelidaki, I., 2011. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy & Environmental Science 4, 4340.
謝明季, 2013。 陰極槽藻類對微生物燃料電池產電之影響。國立臺灣海洋大學碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top