1. E. Kita, N. Kamiya., T. Iio, Application of a direct Trefftz method with domain decomposition to 2D potential problems. Engineering Analysis with Boundary Elements, vol. 23, p. 539-548, 1999.
2. E. Kita, J. i. Katsuragawa, and N. Kamiya, Application of Trefftz-type boundary element method to simulation of two-dimensional sloshing phenomenon. Engineering Analysis with Boundary Elements, vol. 28, p. 677-683, 2004 .
3. Liu, C. S., A Modified Trefftz Method for Two-Dimensional Laplace Equation Considering the Domain’s Characteristic Length. CMES, vol. 21, p. 53-65, 2007.
4. Liu, C. S., A Highly AccurateMCTMfor Inverse Cauchy Problems of Laplace Equation in Arbitrary Plane Domains. CMES, vol. 35, p. 97-111, 2008.
5. Liu, C. S., A highly accurate collocation Trefftz method for solving the Laplace equation in the doubly connected domains. Numerical Methods for Partial Differential Equations, vol. 24, p. 179-192, 2008.
6. Liu, C. S., Yeih, W. C., and Satya N. Atluri, On Solving the Ill-Conditioned System Ax=b: General-Purpose Conditioners Obtained From the Boundary-Collocation Solution of the Laplace Equation, Using Trefftz ExpansionsWith Multiple Length Scales. CMES, vol. 44, p. 281-311, 2009.
7. Chen, Y. W., Liu, C. S., and Chang, J. R., Applications of the modified Trefftz method for the Laplace equation. Engineering Analysis with Boundary Elements, vol. 33, p. 137-146, 2009.
8. Chen, J.T., Kao, S. K., Lee, W. M., and Lee, Y. T., Eigensolutions of the Helmholtz equation for a multiply connected domain with circular boundaries using the multipole Trefftz method. Engineering Analysis with Boundary Elements, vol. 34, p. 463-470 , 2010.
9. Yeih, W. C., Liu, C. S., Kuo, C. L. and Satya N. Atluri, On Solving the Direct/Inverse Cauchy Problems of Laplace Equation in a Multiply Connected Domain, Using the Generalized Multiple-Source-Point Boundary-Collocation Trefftz Method & Characteristic Lengths. CMC, vol. 17, p. 275-302, 2010.
10. Fan, C. M. and Chan, H. F., Modified Collocation Trefftz Method for the Geometry Boundary Identification Problem of Heat Conduction. Numerical Heat Transfer, Part B: Fundamentals, vol. 59, p. 58-75m, 2011.
11. Liu, C. S., S. N. Atluri, Numerical solution of the Laplacian Cauchy problem by using a better postconditioning collocation Trefftz method. Engineering Analysis with Boundary Elements, vol. 37, p. 74-83, 2013.
12. Ku, C. Y., Three-dimensional Laplacian Problems trefftz CMES, vol. 98, p. 509-514, 2014.
13. Kuo, C. L., Yeih, W. C., Liu, C. S., Chang, J. R., Solving Helmholtz equation with high wave number and ill-posed inverse problem using the multiple scales Trefftz collocation method. Engineering Analysis with Boundary Elements, vol. 61: p. 145-152, 2015.
14. Aitchison, J., Numerical Treatment of a Singularity in a Free Boundary Problem. JProc. R. Soc. Lond. A, vol. 330, p. 573-580, 1972.
15. J. T. Oden, N. Kikuchui, Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Engng Sci, vol. 18, p. 1173-1284, 1980.
16. Lee, K. K., D. I. L., Simulation of a free-surface and seepage face using boundary-fitted coordinate system method. Journal of Hydrology, vol. 196, p. 297-309, 1997.
17. Wang, K. P., J. C. B., Finite element adaptive mesh analysis using a cluster of workstations. International journal for numerical methods in fliuds, vol. 27: p. 179-192, 1998.
18. J. P. Bardet, T. Tobita, A practical method for solving free-surface seepage problems. Computers and Geotechnics, vol. 29, p. 451-475, 2002.
19. Jie, Y. X., Jie, G. Z., Mao, Z.Y., Li, G. X., Seepage analysis based on boundary-fitted coordinate transformation method. Computers and Geotechnics, vol. 31, p. 279-283, 2004.
20. Chen, J. T., Hsiao, C. C., Chiu, Y. P., Lee, Y. T., Study of free-surface seepage problems using hypersingular equations. Communications in Numerical Methods in Engineering, vol. 23, p. 755-769, 2006.
21. Herreros, M. I., M. Mabssout, and M. Pastor, Application of level-set approach to moving interfaces and free surface problems in flow through porous media. Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 1-25, 2006.
22. Darbandi, M., Torabi, S. O., Saadat, M., Daghighi, Y., and Jarrahbashi, D., A moving-mesh finite-volume method to solve free-surface seepage problem in arbitrary geometries. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 31, p. 1609-1629, 2007.
23. Tamer Ayvaz, M. and H. Karahan, Modeling three-dimensional free-surface flows using multiple spreadsheets. Computers and Geotechnics, vol. 34, p. 112-123, 2007.
24. Ahmed, A. A., Stochastic analysis of free surface flow through earth dams. Computers and Geotechnics, vol. 36, p. 1186-1190, 2009.
25. Chaiyo, K., P. Rattanadecho, and S. Chantasiriwan, The method of fundamental solutions for solving free boundary saturated seepage problem. International Communications in Heat and Mass Transfer, vol. 38, p. 249-254, 2011.
26. Bazyar, M. H. and A. Graili, A practical and efficient numerical scheme for the analysis of steady state unconfined seepage flows. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 36, p. 1793-1812, 2012.
27. Jie, Y. X. and Liu, Y., Simulated annealing based algorithm for node generation in seepage analysis with meshless method. Mechanics Research Communications, vol. 43, p. 96-100, 2012.
28. Kazemzadeh-Parsi, M. J. and F. Daneshmand, Unconfined seepage analysis in earth dams using smoothed fixed grid finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 36, p. 780-797, 2012.
29. Wu, M. X., Yang, L. Z., and Yu, T., Simulation procedure of unconfined seepage with an inner seepage face in a heterogeneous field. Science China Physics, Mechanics and Astronomy, vol. 56, p. 1139-1147, 2013.
30. Bazyar, M. H. and A. Talebi, Locating the Free Surface Flow in Porous Media Using the Scaled Boundary Finite-Element Method. International Journal of Chemical Engineering and Applications, vol. 5, p. 155-160, 2014.
31. Athani, Shivakumar S., Shivamanth, Solanki, C. H., and Dodagoudar, G. R., Seepage and Stability Analyses of Earth Dam Using Finite Element Method. Aquatic Procedia, vol. 4, p. 876-883, 2015 .
32. Zhang, Y. and J. Wang, Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control and Optimization, vol. 5, p. 351-357, 2015.
33. Wang, Y., Hu, M. S., Zhou, Q. L., Rutqvist Jonny, A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains. Applied Mathematical Modelling, vol. 40, p. 1427-1445, 2016.
34. Jaime J. S. P. Cabral1 and Luiz C. WrobeP, Unconfined flow through porous media using B-SFLINE boundary elements, J. Hydraul. Eng., vol. 117, pp. 1479-1494, 1991.
35. Carastoian Andreea, Unsaturated Slope Stability and Seepage Analysis of a Dam, Energy Procedia, vol. 85, pp. 93-98, 2016
36. 郭仲倫,二維多連通區域的拉普拉斯內外域研究,國立臺灣海洋大學機械與機電學系碩士論文,2006。37. 蘇群川,以擬時間積分法求解地下水滲流問題之研究,國立臺灣海洋大學河海工程研究所碩士論文,2010。38. 王書翰,Trefftz法應用於三維穩態地下水滲流問題之研究,國立臺灣海洋大學河海工程研究所碩士論文,2013。39. 蕭靖恩,應用基本解法求解互層土壤地下水滲流問題之研究,國立臺灣海洋大學河海工程研究所碩士論文,2015。40. 宋希尚,地下水之研究,八版,中正書局,台北,1970。
41. 王如意、易任,應用水文學,國立編譯館出版,1983。