跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅如
研究生(外文):Chang, Ya-Ju
論文名稱:以蛋白質工程提昇 Geodermatophilus obscurus DSM43160 重組 L-核糖異構酶的酵素活性及熱穩定性
論文名稱(外文):Protein Engineering of Recombinant L-Ribose Isomerase from Geodermatophilus obscurus DSM43160 to Enhance Its Enzyme Activity and Thermostability
指導教授:方翠筠
指導教授(外文):Fang, Tsuei-Yun
口試委員:曾文祺潘崇良方翠筠
口試委員(外文):Tseng, Wen-ChiPan, Chorng-LiangFang, Tsuei-Yun
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:61
中文關鍵詞:蛋白質工程ENCoML-核糖異構酶穩定性
外文關鍵詞:protein engineeringENCoML-ribose isomerasestability
相關次數:
  • 被引用被引用:5
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
L-核糖 (L-ribose) 為五碳醛糖,可做為抗病毒及抗癌藥物的前驅物,然而其為一種稀有醣類,使得藥物價格貴並侷限了科學及應用上的發展。L-核糖可先藉由 L-阿拉伯糖異構酶將較廉價的 L-阿拉伯糖轉換為 L-核酮糖,再以 L-核糖異構酶 (L-ribose isomerase, L-RI) 轉換成 L-核糖。先前實驗室成員已將 Geodermatophilus obscurus DSM 43160 來源的 L-ri 基因選殖至 Escherichia coli 表現宿主中,並可表現酵素 Go-RI。
本篇研究先使用 SWISS-MODEL 建立 Go-RI 的結構模型後,再以 ENCoM 軟體預測穩定性較佳的突變點,挑選位於酵素表面的十個殘基進行定位突變。得到突變菌株後製備小量粗酵素液進行篩選,原生型、V142Y、A220F 和 A240L 的粗酵素液活性分別為 1.56、49.8、18.2、56.0 U/ml;以 50°C 熱處理粗酵素液 20 min 後,原生型、E139G 及 A225W 的殘餘活性分別為 7.15%、11.6%、28.8%。挑選此五株突變型進行純化,突變型酵素的比活性均較原生型低,然而培養每公升菌液的原生型、E139G、V142Y、A220F、A225W 和 A240L 可得活性分別為 223、347、2610、680、124、1730 U,顯示突變型菌株 V142Y 與 A240L 的酵素表現量明顯高於原生型菌株;熱穩定性方面原生型酵素於 50°C 保溫下的活性半衰期為 10.8 分鐘,突變型 E139G、A225W 分別為 15.9、19.5 分鐘,是原生型的 1.47 及 1.81 倍顯示熱穩定性增加,雖然 V142Y 有較佳的蛋白質表現量但其活性半衰期僅有 1.19 分鐘,而 A240L 則為 11.3 分鐘與原生型酵素無明顯差異。

L-ribose is a pentose monosaccharide, which can be used as a precursor for the synthesis of L-nucleoside analogs to be formulated into antiviral drugs. Because of L-ribose have only rare amount in nature, the scarcity and high price limit the pursuit of applications and research. L-Ribose can be produced from L-arabinose to L-ribose by two steps. The first step is to catalyze the L-arabinose into L-ribulose by L-arabionose isomerase. The second step is to use L-ribose isomerase (L-RI) catalyzing the aldose-ketose isomerization between L-ribose and L-ribulose. The L-ri gene was previously cloned from the genomic DNA of Geodermatophilusobscurus DSM 43160 and expressed Go-RI in Escherichia coli.
This study aims to enhance the activity and thermostability of L-ribose isomerase by protein engineering. First, we utilized the SWISS-MODEL to obtain a modeled structure of Go-RI, and use the ENCoM sever to evaluate the effects of the single mutation of all residues on the thermodynamic stability of Go-RI structure. Then, chose the best ten mutation residues located at the protein surface and constructed these mutations. The crude extracts containing wild-type and mutant Go-RIs have been assayed, and wild-type and mutant V142Y, A220F and A240L Go-RIs have 1.56, 49.8, 18.2 and 56.0 U/ml, respectively. The residual activities of the crude extracts containing wild-type, E139G and A225W Go-RIs after incubating at 50°C for 20 min are 7.15%, 11.6% and 28.8%, respectively. After purifying the wild-type and the above five selected mutant GoRIs, the specific activities of all five mutant Go-RIs are less than that of wild-type Go-RI. Since the total activities of wild-type, E130G, V142Y, A220F, A225W and A240L GoRIs from a liter of culture broth are 223, 347, 2610, 680, 124 and 1730 U, respectively, the expression of mutant V142Y and A240L Go-RIs are greater than that of wild-type Go-RI. The half-lives of mutant E139G (15.9 min) and A225W (19.5 min) Go-RIs at 50°C are 1.47 and 1.81 fold of wild-type (10.8 min), respectively. Although the mutant V142Y Go-RI has the better expression, its half-life at 50°C is only 1.19 min. The half-life of mutant A240L Go-RI is 11.3 min, which is similar to wild-type Go-RI.

目錄 I
圖目錄 III
表目錄 IV
壹、 研究背景與目的 1
一、 研究背景 1
二、 研究目的 1
貳、 文獻整理 2
一、 稀有醣類 2
1. 稀有醣類簡介 2
2. 核糖 2
二、 L-核糖的生產 2
1. L-甘露醇-1-脫氫酶 3
2. L-核糖醇脫氫酶 3
3. L-阿拉伯糖異構酶 4
4. 甘露糖-6-磷酸異構酶 4
5. L-核糖異構酶 4
三、 L-RI之結晶結構及序列分析 5
1. L-RI 之結構 5
2. 與基質及金屬離子結合的相關序列 5
四、 L-RI 的來源 5
1. G. obscurus DSM 43160 來源的L-RI (Go-RI) 6
2. Acinetobacter sp. DL-28來源的L-RI (AcRI) 6
3. C. parahominis MB426來源的L-RI (CeRI) 6
五、 合理化設計決定突變點 7
1. 同源結構模擬 7
2. ENCoM 預測穩定性軟體 7
參、 實驗設計與流程 9
一、 軟體分析及得到突變型菌株 9
1. 結構模擬及突變點分析 9
2. 定位突變 9
二、 篩選及分析突變型酵素之特性及熱穩定性 9
1. 篩選突變型菌株活性及熱穩定性 9
2. 突變型菌株之大量表現與特性探討 10
肆、 實驗材料與方法 11
一、 材料 11
1. 菌株與載體 11
2. 抗生素 11
3. 標準品 11
4. 酵素 11
5. 市售套組 11
6. 培養基 12
7. 化學藥品 12
8. 實驗設備 13
9. 軟體 15
二、 方法 16
1. 電腦模擬 16
2. 製備小量 plasmid DNA 16
3. 定位點突變 17
4. 電穿孔轉形 19
5. 篩選突變型菌株 21
6. SDS-PAGE 23
7. 蛋白質表現及純化 24
8. 蛋白質特性探討 26
伍、 結果與討論 29
一、 軟體模擬與突變點預測 29
1. Go-RI 結構模擬 29
2. ENCoM 預測熱穩定之突變點 29
二、 篩選突變型酵素活性及熱穩定性 30
1. Go-RI 之定位突變 30
2. Go-RI 之粗酵素液活性篩選 30
3. Go-RI 之粗酵素液熱穩定性篩選 30
三、 純化 Go-RI 特性及熱穩定性 31
1. 純化 Go-RI 之大量表現與純化 31
2. 純化 Go-RI 特性與熱穩定性 31
3. 純化 Go-RI 的酵素動力學參數 32
四、 討論 33
陸、 結論 34
柒、 參考文獻 35
捌、 圖 40
玖、 表 57

許仲霆,2014,利用蛋白質工程提昇 D-阿洛酮糖表異構酶之活性回收及熱穩定性,國立台灣洋大學食品科學系碩士學位論文,基隆。
游銘遠,2012,Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
魏岑芸,2007,增加基質結合部位殘基與基質間氫鍵對於 Sulfolobus solfararicus ATCC35092 麥芽寡糖苷海藻糖生成酶轉糖苷及水解作用之影響,國立台灣洋大學食品科學系碩士學位論文,基隆。
Adachi O, Fujii Y, Ano Y, MOONMANGMEE D, Toyama H, et al. (2001). Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Bioscience, Biotechnology, and Biochemistry 65: 115-125.
Ahmed Z, Shimonishi T, Bhuiyan SH, Utamura M, Takada G, et al. (1999). Biochemical preparation of L-ribose and L-arabinose from ribitol: a new approach. Journal of Bioscience and Bioengineering 88: 444-448.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.
Asboth B, and Naray-Szabo G. (2000). Mechanism of action of D-xylose isomerase. Current Protein and Peptide Science 1: 237-254.
Ashley GW. (1992). Modeling, synthesis, and hybridization properties of (L)-ribonucleic acid. Journal of the American Chemical Society 114: 9731-9736.
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research: DOI: 10.1093/nar/gku1340.
Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, et al. (2012). Engineering the third wave of biocatalysis. Nature 485: 185-194.
Cho E-A, Lee D-W, Cha Y-H, Lee S-J, Jung H-C, et al. (2007). Characterization of a novel D-lyxose Isomerase from Cohnella laevoribosii RI-39 sp. . Journal of Bacteriology 189: 1655-1663.
Chothia C, and Lesk AM. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO journal 5: 823.
Chu CK, Ma T, Shanmuganathan K, Wang C, Xiang Y, et al. (1995). Use of 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus. Antimicrobial Agents and Chemotherapy 39: 979-981.
Dehouck Y, Kwasigroch JM, Gilis D, and Rooman M. (2011). PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12: 1.
Dische Z, and Borenfreund E. (1951). A new spectrophotometric method for the detection and determination of keto sugars and trioses. Journal of Biological Chemistry 192: 583-587.
Du J, Choi Y, Lee K, Chun BK, Hong JH, et al. (1999). A practical synthesis of L-FMAU from L-arabinose. Nucleosides, Nucleotides & Nucleic Acids 18: 187-195.
Frappier V, Chartier M, and Najmanovich RJ. (2015). ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Research: DOI: 10.1093/nar/gkv1343.
Frappier V, and Najmanovich RJ. (2014). A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations. PLoS Computational Biology 10: e1003569.
Hanahan D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166: 557-580.
Harlow E, and Lane D. (1988). A laboratory manual. Cold Spring Harbor Laboratory 579.
Helanto M, Kiviharju K, Granström T, Leisola M, and Nyyssölä A. (2009). Biotechnological production of L-ribose from L-arabinose. Applied Microbiology and Biotechnology 83: 77-83.
Helanto M, Kiviharju K, Leisola M, and Nyyssölä A. (2007). Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Applied and Environmental Microbiology 73: 7083-7091.
Hung X-G, Yu M-Y, Chen Y-C, and Fang T-Y. (2015). Characterization of a recombinant L-ribose isomerase from Geodermatophilus obscurus DSM 43160 and application of this enzyme to the production of L-ribose from L-arabinose. Journal of Marine Scence and Technology-Taiwan 23: 558-566.
Jumppanen J, Nurmi J, and Pastinen O. (2000). Process for the continuous production of high purity L-ribose. In): Google Patents.
Kim K-R, Seo E-S, and Oh D-K. (2014). L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans. Applied Biochemistry and Biotechnology 172: 275-288.
Kylmä A, Granström T, and Leisola M. (2004). Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production. Applied Microbiology and Biotechnology 63: 584-591.
Levin GV. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food 5: 23-36.
Luedemann GM. (1968). Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). Journal of Bacteriology 96: 1848-1858.
Michaelis L, and Menten ML. (1913). Die kinetik der invertinwirkung. Biochem. z 49: 352.
Milgrom P, Ly K, Roberts M, Rothen M, Mueller G, et al. (2006). Mutans streptococci dose response to xylitol chewing gum. Journal of Dental Research 85: 177-181.
Mizanur RM, Takata G, and Izumori K. (2001). Cloning and characterization of a novel gene encoding L-ribose isomerase from Acinetobacter sp. strain DL-28 in Escherichia coli. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1521: 141-145.
Morimoto K, Terami Y, Maeda Y-i, Yoshihara A, Takata G, et al. (2013). Cloning and characterization of the L-ribose isomerase gene from Cellulomonas parahominis MB426. Journal of Bioscience and Bioengineering 115: 377-381.
Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, et al. (2003). A novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. Journal of Bioscience and Bioengineering 96: 89-91.
Neumann E, Schaefer-Ridder M, Wang Y, and Hofschneider P. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO journal 1: 841.
Okano K. (2009). Synthesis and pharmaceutical application of L-ribose. Tetrahedron 65: 1937-1949.
Prabhu P, Tiwari MK, Jeya M, Gunasekaran P, Kim I-W, et al. (2008). Cloning and characterization of a novel L-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology 81: 283-290.
Schleif R. (2000). Regulation of the L-arabinose operon of Escherichia coli. Trends in Genetics 16: 559-565.
Shimonishi T, and Izumori K. (1996). A new enzyme, L-ribose isomerase from Acinetobacter sp. strain DL-28. Journal of Fermentation and Bioengineering 81: 493-497.
Takahashi H, Iwai Y, Hitomi Y, and Ikegami S. (2002). Novel synthesis of L-ribose from D-mannono-1, 4-lactone. Organic letters 4: 2401-2403.
Tang S. (2012). Rare sugars: Applications and enzymatic production. Biocatalysis and Biotransformation 2: 363-368.
Terami Y, Yoshida H, Uechi K, Morimoto K, Takata G, et al. (2014). X-ray structure of Cellulomonas parahominis L-ribose isomerase. Photon Factory Activity Report #32: 46.
Tseng W-C, Lin J-W, Wei T-Y, and Fang T-Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry 375: 376-378.
Wang P, Hong JH, Cooperwood JS, and Chu CK. (1998). Recent advances in L-nucleosides: chemistry and biology. Antiviral Research 40: 19-44.
Woodyer RD, Wymer NJ, Racine FM, Khan SN, and Saha BC. (2008). Efficient production of L-ribose with a recombinant Escherichia coli biocatalyst. Applied and Environmental Microbiology 74: 2967-2975.
Wulff G, and Hansen A. (1987). Synthesis of monosaccharides with the aid of a new synthetic equivalent for the glycolaldehyde anion. Carbohydrate Research 164: 123-140.
Yamaguchi M, and Mukaiyama T. (1981). The stereoselective synthesis of D-and L-ribose. Chemistry Letters 10: 1005-1008.
Yeom S-J, Ji J-H, Kim N-H, Park C-S, and Oh D-K. (2009a). Substrate specificity of a mannose-6-phosphate isomerase from Bacillus subtilis and its application in the production of L-ribose. Applied and Environmental Microbiology 75: 4705-4710.
Yeom S-J, Ji J-H, Yoon R-Y, and Oh D-K. (2008). L-Ribulose production from L-arabinose by an L-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnology Letters 30: 1789-1793.
Yeom S-J, Kim N-H, Park C-S, and Oh D-K. (2009b). L-Ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Applied and Environmental Microbiology 75: 6941-6943.
Yoshida H, Yoshihara A, Teraoka M, Terami Y, Takata G, et al. (2014). X‐ray structure of a novel L‐ribose isomerase acting on a non‐natural sugar L‐ribose as its ideal substrate. FEBS Journal 281: 3150-3164.
Yun M, Moon HR, Kim HO, Choi WJ, Kim Y-C, et al. (2005). A highly efficient synthesis of unnatural L-sugars from D-ribose. Tetrahedron Letters 46: 5903-5905.
Zhang Y-W, Jeya M, and Lee J-K. (2010). L-Ribulose production by an Escherichia coli harboring L-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology 87: 1993-1999.
Zhang Y-W, Prabhu P, and Lee J-K. (2009). Immobilization of Bacillus licheniformis L-arabinose isomerase for semi-continuous L-ribulose production. Bioscience, Biotechnology, and Biochemistry 73: 2234-2239.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊