跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/18 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃晏珊
研究生(外文):Huang, Yen-Shan
論文名稱:探討台灣地區消費者暴露於腸炎弧菌之風險及有效之干預措施:以帶殼生牡蠣為例
論文名稱(外文):Risk Assessment of Vibrio parahaemolyticus and Effectiveness of Intervention Steps for Shelled Raw Oysters in Taiwan
指導教授:蕭心怡蕭心怡引用關係
指導教授(外文):Hsiao, Hsin-I
口試委員:楊振昌潘崇良鄭光成
口試委員(外文):Yang, Chen-ChangPan, Chorng-LiangCheng, Kuan-Chen
口試日期:2015-09-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:83
中文關鍵詞:腸炎弧菌風險評估干預措施牡蠣精油
外文關鍵詞:Vibrio parahaemolyticusrisk assessmentIntervention stepsoysteressential oilpolylysine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
腸炎弧菌中毒為台灣常見之食品病原一,佔細性物中毒案件首位,為生長於海水之嗜鹽性菌因此常發現產品。本論文中毒案件首位,為生長於海水之嗜鹽性菌因此常發現產品。本論文中毒案件首位,為生長於海水之嗜鹽性菌因此常發現產品。本論文中毒案件首位,為生長於海水之嗜鹽性菌因此常發現產品。本論文中毒案件首位,為生長於海水之嗜鹽性菌因此常發現產品。本論文目的為建立腸炎弧菌之風險評估,以帶殼生牡蠣為例,並探討以葡萄柚精油 (GEO) 與ε-polylysine (ε-PL) 對去殼牡蠣上腸炎弧菌之抑效果做為干預措施。
風險評估是透過@Risk軟體以蒙地卡羅法 (Monte Carlo Simulation) 進行風險值模擬,蒐集了收穫、運輸消費者食用等三階段之資料,以預測微生物模型其菌數之變化,再藉由匯入國人攝食量與平均每份牡蠣用以Dose-response model計算其暴露量,經計算後食用帶殼生牡蠣暴露於總腸炎弧菌及致病性腸炎弧菌之量分別為 6.50 和 3.24 log CFU/g。風險評估結果顯示,食用一份帶殼生牡蠣而造成腸炎弧菌中毒之風險值為7.91×10-4。此外,預測微生物模型之結果發現,以絕對溫度的倒數 (1/273.15+℃) 與其不活化速率之二級模型其R2為最佳 (> 0.99)。由敏感性分析可知影響風險之因子大至小分別為:收穫後氣溫、收至冷藏時間攝食量運輸度初始菌數和致病性菌株比例,由此結果可看出牡蠣收穫後之溫度控制為造成腸炎弧中毒風險的主要因子。最後,GEO 與ε-PL 對腸炎弧菌抑制效果顯示,濃度 0.5% 以上之 GEO 和 ε-PL 在 4℃ 下能分別在第 2 天和第 5 天後抑制腸炎弧菌至未檢出。而在 16℃ 下則僅能在初期些微抑制,爾後則顯著生長。
總而言之,本研究進行了台灣地區帶殼生牡蠣腸炎弧菌之風險評估,可做為未來風險管理措施之參考。此外,低溫能增強 GEO 與ε-PL對腸炎弧菌之抗菌效果。未來應加強蒐集風險評估所缺乏之資料,以減少不確定性,增加風險評估之準確度。
Vibrio parahaemolyticus is recognized as the leading cause of foodborne out-breaks associated with the consumption of seafood in Taiwan. The objective of this research is to assess the risk of V. parahaemolyticus in raw shelled oysters in Taiwan, and study the intervention steps. Regarding of intervention steps, the antibacterials test of grapefruit essential oil (GEO) and ε-polylysine (ε-PL) against V. parahaemolyticus were also included.
The risk assessment was modelled with Monte Carlo simulation performed by @risk. Total and pathogenic V. parahaemolyticus exposure of raw oysters consumption (log CFU/serving) was 6.50 and 3.24 log CFU/serving, respectively. The estimated risks per serving of oysters were 7.91×10-4. The growth rate of V. parahaemolyti-cus.with the temperature function as 1/273.15+℃ (1/K) was used to describe the change in V. parahaemolyticus in oysters [- log CFU/g/h] for exposure assessment (R2 > 0.99). Among the variables identified by sensitivity analysis, the most influential intervention steps was the ambient temperature at harvest and the time-to-refrigeration, which means the farmers should keep the oysters refrigerated after harvest rather than room temper-ature. The ɛ-PL and GEO treatment under 4 ℃ storage showed that with concentration > 0.5% can decrease the level of V. parahaemolyticus to non-detectable within 2 and 5 days storage, respectively. In the case of 16 ℃, both GEO and ɛ-PL showed slightly inhibition on the level of V. parahaemolyticus in oyster at the beginning but grew sig-nificantly at the following days.
Overall, the results of present study evaluated the risk of V. parahaemolyticus in raw oysters of Taiwan and provided a whole procedure although simplified, can be a helpful tool to evaluate the relationship between risk and factors which may be used to mitigate risk. The antibacterial activities of GEO and ɛ-PL on V. parahaemolyticus in oysters were enhanced with low temperature storage. Focus of future studies supposed to collect the lack data on variables to reduce the uncertainty in estimation of risk and increase the accuracy of risk assessment.
Table of Contents
Table of Contents ........................................................................................................... I
List of Tables ................................................................................................................ III
List of Figures .............................................................................................................. IV
Acknowledgements ....................................................................................................... V
Abstract ........................................................................................................................ VI
摘要............................................................................................................................ VII
I. Introduction ...................................................................................................... 1
1.1 Research background and purpose..................................................................... 1
1.2 Research process flowchart ................................................................................ 3
II. Literature review .............................................................................................. 4
2.1 Vibrio parahaemolyticus .................................................................................... 4
2.2 Detection method of V. parahemolyticus ........................................................... 4
2.3 V. parahaemolyticus outbreaks and prevalence ................................................. 5
2.3.1 Studies of V. parahaemolyticus in Taiwan ....................................................... 6
2.4 Exposure and predictive growth rate of V. parahaemolyticus in oysters ........... 7
2.5 Risk assessment ................................................................................................. 8
2.5.1 Risk assessment of V. parahaemolyticus in Seafood ....................................... 9
2.5.2 Distribution of variables................................................................................. 10
2.5.2.1 Farm-to-table module....................................................................... 10
2.5.3 Intervention measures for controlling bacteria in seafood ............................. 11
2.5.3.1 Depuration........................................................................................ 11
2.5.3.2 Immediate refrigeration ................................................................... 12
2.5.3.3 Thermal processes ............................................................................ 12
2.5.3.4 High hydrostatic pressure processing .............................................. 13
2.5.3.5 Irradiation ......................................................................................... 14
2.5.3.6 Electrolyzed oxidizing water (EOW) ............................................... 14
2.5.3.7 Chlorine and ClO2 ............................................................................ 14
2.5.3.8 Essential Oils (EOs) ......................................................................... 15
2.5.3.9 ε-polylysine ...................................................................................... 16
III. Materials......................................................................................................... 18
3.1 Materials .......................................................................................................... 18 3.1.1 Unshelled oysters ........................................................................................... 18 3.1.2 Strain .............................................................................................................. 18 3.1.3 Culture Media ................................................................................................ 18 3.1.4 Chemicals ....................................................................................................... 18 3.1.5 Instrument ...................................................................................................... 18
IV. Methods............................................................................................................ 20
4.1 Risk assessment ............................................................................................... 20 4.1.1 Hazard identification ...................................................................................... 20
II
4.1.2 Dose-response assessment ............................................................................. 20 4.1.3 Exposure assessment ...................................................................................... 20 4.1.3.1 Harvest modeule .............................................................................. 20 4.1.3.2 Post-Harvest module ........................................................................ 21 4.1.3.3 Consumption module ....................................................................... 22
4.1.3.4 Assumptions ..................................................................................... 23 4.1.4 Risk characterization ...................................................................................... 23 4.1.5 Sensitivity analysis ......................................................................................... 24
4.2 Development of inactivation model of V. parahaemolyticus at storage temperature..................................................................................................... 24
4.2.1 Preparation of oyster samples .......................................................... 24
4.2.2 Preparation and subculture of bacterial strains ................................ 24
4.2.3 Inoculation test ................................................................................. 25 4.2.4 Inactivation rate prediction of V. parahaemolyticus on oysters at storag temperature ........................................................................................................ 25
4.3 Reduction of antibacterials against V. parahaemolyticus on unshelled raw oysters .......................................................................................................................... 26 4.3.1 Antibacterial activity of grapefruit essential oil (GEO) and ε-polylysine (ε-PL) against V. parahaemolyticus in broth system .......................................... 26 4.3.2 Antibacterial activity of grapefruit essential oil (GEO) and ε-polylysine (ε-PL) against V. parahaemolyticus on oysters .................................................. 26
4.4 Statistical analysis ............................................................................................ 26
V. Result and discussion ....................................................................................... 27 5.1 Risk assessment.............................................................................................. 27 5.1.1 Hazard identification ...................................................................................... 27 5.1.2 Dose-response assessment ............................................................................. 28 5.1.3 Exposure assessment ...................................................................................... 28
(1) Background microorganisms elimination of unshelled oysters ..................... 28 (2) Reduction of V. parahaemolyticus on oysters at storage temperature ........... 29
(3) Inactivation rate of V. parahaemolyticus on oysters at storage temperature .. 29 5.1.3.2 Harvest modeule .............................................................................. 30 5.1.3.3 Post-Harvest module ........................................................................ 30 5.1.3.4 Consumption module ....................................................................... 31 5.1.4 Risk characterization ...................................................................................... 31
5.1.5 Sensitivity analysis ......................................................................................... 32
5.2 New intervention method for controlling V. parahaemolyticus in unshlled oysters ............................................................................................................ 32
5.2.1 Antibacterial results of grapefruit essential oil (GEO) and ε-polylysine (ε-PL) against V. parahaemolyticus in broth system ................................................. 32
5.2.2 Antibacterial results of grapefruit essential oil and ε-polylysine against V. parahaemolyticus on oysters .......................................................................... 34
5.3 Limitations ..................................................................................................... 35
VI. Conclusion ....................................................................................................... 36
VII. Reference .............................................................................................................. 38
Appendix ...................................................................................................................... 73
Abdullah Sani, Ariyawansa, Babji, & Hashim. (2013). The risk assessment of Vibrio parahaemolyticus in cooked black tiger shrimps (Penaeus monodon) in Malaysia. Food Control, 31(2), 546-552.
Alam, Tomochika, Miyoshi, & Shinoda. (2002). Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiology Letters, 208(1), 83-87.
Andrews, Jahncke, & Mallikarjunan. (2003). Low dose gamma irradiation to reduce pathogenic vibrios in live oysters (Crassostrea virginica). Journal of Aquatic Food Product Technology, 12(3), 71-82.
Andrews, Park, & Chen. (2000). Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters. Food Additives & Contaminants, 17(9), 787-791.
Bandekar, Chander, & Nerkar. (1986). Radiation control of Vibrio parahaemolyticus in shrimp. Journal of Food Safety, 8(2), 83-88.
Barbosa, Rall, Fernandes, Ushimaru, da Silva Probst, & Fernandes Jr. (2009). Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne pathogens and disease, 6(6), 725-728.
Bej, Patterson, Brasher, Vickery, Jones, & Kaysner. (1999). Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. Journal of Microbiological Methods, 36(3), 215-225.
Benli, Sanchez-Plata, & Keeton. (2011). Efficacy of ε-polylysine, lauric arginate, or acidic calcium sulfate applied sequentially for Salmonella reduction on membrane filters and chicken carcasses. Journal of Food Protection, 74(5), 743-750.
Burt. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
CAC. (1999). Principles and guidelines for the conduct of microbiological risk assessment. CAC/GL, 30, 1999.
Caccioni, Guizzardi, Biondi, Renda, & Ruberto. (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology, 43(1), 73-79.
Calik, Morrissey, Reno, & An. (2002). Effect of High‐Pressure Processing on Vibrio parahaemolyticus Strains in Pure Culture and Pacific Oysters. Journal of Food Science, 67(4), 1506-1510.
Calo, Crandall, O'Bryan, & Ricke. (2015). Essential oils as antimicrobials in food systems–A review. Food Control, 54, 111-119.
CDC. (2006). Vibrio parahaemolyticus Infections Associated with Consumption of Raw Shellfish—Three States (2006). Morbidity and Mortality Weekly Report. . Centers for Disease Control and Prevention, 1-2.
CDC. (2013). Vibrio parahaemolyticus. Centers for Disease Control and Prevention. Retrieved 05/01/2015, from www.cdc.gov/vibrio/vibriop.html
Chaiyakosa, Charernjiratragul, Umsakul, & Vuddhakul. (2007). Comparing the efficiency of chitosan with chlorine for reducing Vibrio parahaemolyticus in shrimp. Food Control, 18(9), 1031-1035.
Chang, Lu, Park, & Kang. (2010). Control of foodborne pathogens on ready-to-eat roast beef slurry by ε-polylysine. International Journal of Food Microbiology, 141(3),
39
236-241.
Chanthaphon, Chanthachum, & Hongpattarakere. (2008). Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin Journal of Science and Technology (Thailand).
Chen, Jane, Chen, & Wong. (2009). Morphological changes of Vibrio parahaemolyticus under cold and starvation stresses. International Journal of Food Microbiology, 129(2), 157-165.
Chiou, Hsu, Chiu, Wang, & Chao. (2000). Vibrio parahaemolyticus serovar O3:K6 as cause of unusually high incidence of food-borne disease outbreaks in Taiwan from 1996 to 1999. Journal of Clinical Microbiology, 38(12), 4621-4625.
Christopher Frey, & Patil. (2002). Identification and review of sensitivity analysis methods. Risk Analysis, 22(3), 553-578.
Cook. (2003). Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing. Journal of Food Protection, 66(12), 2276-2282.
Cook, Oleary, Hunsucker, Sloan, Bowers, Blodgett, & Depaola. (2002). Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999. Journal of Food Protection, 65(1), 79-87.
Cook, & Ruple. (1989). Indicator bacteria and Vibrionaceae multiplication in post-harvest shellstock oysters. Journal of Food Protection, 52(5), 343-349.
Costa Sobrinho, Destro, Franco, & Landgraf. (2010). Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo State, Brazil. Applied and Environmental Microbiology, 76(4), 1290-1293.
Costa Sobrinho, Destro, Franco, & Landgraf. (2014). A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil. International Journal of Food Microbiology, 180, 69-77.
Croci, Suffredini, Cozzi, & Toti. (2002). Effects of depuration of molluscs experimentally contaminated with Escherichia coli, Vibrio cholerae and Vibrio parahaemolyticus. Journal of Applied Microbiology, 92(3), 460-465.
Daniels, Ray, Easton, Marano, Kahn, McShan II, Del Rosario, Baldwin, Kingsley, & Puhr. (2000). Emergence of a New Vibrio parahaemolyticus Serotype in Raw Oysters. JAMA: The Journal of the American Medical Association, 284(12), 1541-1545.
Deepanjali, Kumar, & Karunasagar. (2005). Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Applied and Environmental Microbiology, 71(7), 3575-3580.
DePaola, Kaysner, Bowers, & Cook. (2000). Environmental Investigations of Vibrio parahaemolyticus in Oysters after Outbreaks in Washington, Texas, and New York (1997 and 1998). Applied and Environmental Microbiology, 66(11), 4649-4654.
EPA. (2000). Toxicological Review of Chlorine Dioxide and Chlorite. . US Environmental Protection Agency Report, EPA/635/R-600/007.
Eyles, & Davey. (1984). Microbiology of commercial depuration of the Sydney rock oyster, Crassostrea commercialis. Journal of Food Protection, 47(9), 703-706, 712.
Fang, Huang, & Chen. (1987). Studies on Contamination of Vibrio Parahaemolyticus of Seafood in Taiwan. Annual Scientific Report of National Laboratories of Foods and Drugs, Department of Health, Executive Yuan of Taiwan, 5, 133-140.
FAO/WHO. (2006). Food safety risk analysis. A guide for national food safety
40
authorities. FAO Food and Nutrition Paper N° 87. Food and Agriculture Organization of the United Nations, Rome, 978-92-5-105604-2, 121.
FAO/WHO. (2011). Risk Assessment of Vibrio parahaemolyticus in Seafood: Interpretative Summary and Technical Report. Food and Agriculture Organization of the United Nations/World Health Organization. . Microbiological Risk Assessment Series 16, 193.
FDA. (2003). GRAS Notice for ε-Polvlvsine. Food and Drug Administration Retrieved 04/23/2015, from http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen/documents/document/ucm269521.pdf
FDA. (2004). Bacteriological Analytical Manual, Chapter 9. Vibrio. Retrieved 05/01/2015, from http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070830.htm
FDA. (2005). Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oysters. Food and Drug Administration. Retrieved 04/21/2015, from http://www.fda.gov/food/scienceresearch/researchareas/riskassessmentsafetyassessment/ucm050421.htm.
Fernandez-Piquer, Bowman, Ross, & Tamplin. (2011). Predictive models for the effect of storage temperature on Vibrio parahaemolyticus viability and counts of total viable bacteria in Pacific oysters (Crassostrea gigas). Applied and Environmental Microbiology, 77(24), 8687-8695.
Fisheries Agency. (2011). Taiwan Fisheries Yearbook-2011.
Fleet. (1978). Oyster depuration—a review. Food Technology, Aust. 30, 444–454.
FSCJ. (2012). Health Impact Assessment Report on Vibrio parahaemolyticus in Seafood. Tokyo, Japan: Food Safety Commission.
Geornaras, & Sofos. (2005). Activity of ε–Polylysine Against Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes. Journal of Food Science, 70(9), M404-M408.
Gonzalez-Escalona, Cachicas, Acevedo, Rioseco, Vergara, Cabello, Romero, & Espejo. (2005). Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerging Infectious Diseases, 11(1), 129-131.
Gooch, DePaola, Bowers, & Marshall. (2002). Growth and survival of Vibrio parahaemolyticus in postharvest American oysters. Journal of Food Protection, 65(6), 970-974.
Gutierrez, Barry-Ryan, & Bourke. (2009). Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiology, 26(2), 142-150.
Hara-Kudo, Sugiyama, Nishibuchi, Chowdhury, Yatsuyanagi, Ohtomo, Saito, Nagano, Nishina, & Nakagawa. (2003). Prevalence of pandemic thermostable direct hemolysin-producing Vibrio parahaemolyticus O3: K6 in seafood and the coastal environment in Japan. Applied and Environmental Microbiology, 69(7), 3883-3891.
Hiraki, Ichikawa, Ninomiya, Seki, Uohama, Seki, Kimura, Yanagimoto, & Barnett. (2003). Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37(2), 328-340.
Honda, Ni, & Miwatani. (1988). Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infection and Immunity, 56(4), 961-965.
41
Hoornstra, Northolt, Notermans, & Barendsz. (2001). The use of quantitative risk assessment in HACCP. Food Control, 12(4), 229-234.
Hu, Mallikarjunan, Koo, Andrews, & Jahncke. (2005). Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oysters. Journal of Food Protection, 68(2), 292-295.
Huang, Hsieh, Lin, Lin, Hung, & Hwang. (2006). Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food Control, 17(12), 987-993.
Hung. (2014). Effect of Slightly Basic Electrolyzed Water on Growth and Disinfection Mechanism of Vibrio parahaemolyticus and Staphylococcus aureus. Master's thesis. Food Science. National Taiwan Ocean University, Taiwan.
Iwahori, Yamamoto, Suzuki, Yamamoto, Tsutsui, Motoyama, Sawada, Matsushita, Hasegawa, Osaka, Toyofuku, & Kasuga. (2010). Quantitative risk assessment of Vibrio parahaemolyticus in finfish: a model of raw horse mackerel consumption in Japan. Risk Analysis, 30(12), 1817-1832.
Iwahori, Yamamoto, Suzuki, Yamamoto, Tsutsui, Motoyama, Sawada, Matsushita, Hasegawa, Osaka, Toyofuku, & Kasuga. (2010). Quantitative Risk Assessment of Vibrio parahaemolyticus in Finfish: A Model of Raw Horse Mackerel Consumption in Japan. Risk Analysis, 30(12), 1817-1832.
Jakabi, Gelli, Torre, Rodas, Franco, Destro, & Landgraf. (2003). Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis, and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana). Journal of Food Protection, 66(6), 1025-1029.
Johnson, Baross, & Liston. (1971). Vibrio parahaemolyticus and its importance in seafood hygiene. Journal of the American Veterinary Medical Association, 159(11), 1470.
Juneja, Hwang, & Friedman. (2010). Thermal inactivation and postthermal treatment growth during storage of multiple Salmonella serotypes in ground beef as affected by sodium lactate and oregano oil. Journal of Food Science, 75(1), M1-M6.
Kaysner, & DePaola. (2000). Outbreaks of Vibrio parahaemolyticus gastroenteritis from raw oyster consumption: assessing the risk of consumption and genetic methods for detection of pathogenic strains. Journal of Shellfish Research, 19, 657.
Kim, Lee, Hwang, & Yoon. (2012). Effect of Temperature on Growth of Vibrio paraphemolyticus and Vibrio vulnificus in Flounder, Salmon Sashimi and Oyster Meat. International journal of environmental research and public health, 9(12), 4662-4675.
Kiura, Sano, Morimatsu, Nakano, Morita, Yamaguchi, Maeda, & Katsuoka. (2002). Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. Journal of Microbiological Methods, 49(3), 285-293.
Koga, Hirota, & Takumi. (1999). Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus. Microbiological research, 154(3), 267-273.
Lake, Hudson, & Cressey. (2003). Risk profile: Vibrio parahaemolyticus in seafood. Crown Research Institute. Institute of Environmental Science and Research Limited Christchurch Science Centre, PO Box, 29, 181.
42
Lanciotti, Gianotti, Patrignani, Belletti, Guerzoni, & Gardini. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science & Technology, 15(3), 201-208.
Lawley, Curtis, & Davis. (2012). The food safety hazard guidebook: Royal Society of Chemistry.
Lee, Jung, Eom, Oh, Kim, Kwak, & Kim. (2008). Occurrence of Vibrio parahaemolyticus in oysters from Korean retail outlets. Food Control, 19(10), 990-994.
Li. (2001). The Antibacterial Effect of Chitosan on Vibrio parahaemolyticus. Master's Thesis. Food Science and Technology, National Taiwan University, Taiwan. .
Li, Han, Feng, Tian, & Mo. (2014). Antibacterial characteristics and mechanisms of ɛ-polylysine against Escherichia coli and Staphylococcus aureus. Food Control, 43, 22-27.
Lin, Labbe, & Shetty. (2005). Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innovative Food Science & Emerging Technologies, 6(4), 453-458.
Liu. (2002). Development of Predictive Models for Growth of Vibrio parahaemolyticus in Broth System. Master's Thesis. Food Science. National Chung Hsing University, Taiwan.
Liu, & Yang. (2012). Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems. International Journal of Food Microbiology, 156(1), 68-75.
Martinez-Urtaza, Simental, Velasco, DePaola, Ishibashi, Nakaguchi, Nishibuchi, Carrera-Flores, Rey-Alvarez, & Pousa. (2005). Pandemic Vibrio parahaemolyticus O3: K6, Europe. Emerging Infectious Diseases, 11(8), 1319-1320.
McLaughlin, DePaola, Bopp, Martinek, Napolilli, Allison, Murray, Thompson, Bird, & Middaugh. (2005). Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. New England Journal of Medicine, 353(14), 1463-1470.
Mejlholm, & Dalgaard. (2002). Antimicrobial effect of essential oils on the seafood spoilage micro‐organism Photobacterium phosphoreum in liquid media and fish products. Letters in Applied Microbiology, 34(1), 27-31.
Miles, Ross, Olley, & McMeekin. (1997). Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. International Journal of Food Microbiology, 38(2), 133-142.
Montanari. (2008). Cold chain tracking: a managerial perspective. Trends in Food Science & Technology, 19(8), 425-431.
Njongmeta, Benli, Dunkley, Dunkley, Miller, Anderson, O'bryan, Keeton, Nisbet, & Crandall. (2011). Application of acidic calcium sulfate and ε‐polylysine to pre‐rigor beef rounds for reduction of pathogens. Journal of Food Safety, 31(3), 395-400.
Parveen, Hettiarachchi, Bowers, Jones, Tamplin, McKay, Beatty, Brohawn, DaSilva, & DePaola. (2008). Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. International Journal of Food Microbiology, 128(2), 354-361.
Pendleton, Crandall, Ricke, Goodridge, & O’Bryan. (2012). Inhibition of beef isolates of E. coli O157: H7 by orange oil at various temperatures. Journal of Food Science, 77(6), M308-M311.
43
Pittman. (2011). Validation and evaluation of commercially available compounds for use as beef and pork antimicrobial interventions. Colorado State University.
Puente, Vega-Villasante, Holguin, & Bashan. (1992). Susceptibility of the brine shrimp Artemiaand its pathogen Vibrio parahaemolyticus to chlorine dioxide in contaminated sea-water. Journal of Applied Bacteriology, 73, 465-471.
Ray, Hawkins, & Hackney. (1978). Method for the detection of injured Vibrio parahaemolyticus in seafoods. Applied and Environmental Microbiology, 35(6), 1121-1127.
Ren, & Su. (2006). Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters. Journal of Food Protection, 69(8), 1829-1834.
Sawamura, Thi Minh Tu, Onishi, Ogawa, & Choi. (2004). Characteristic odor components of Citrus reticulata Blanco (Ponkan) cold-pressed oil. Bioscience, biotechnology, and biochemistry, 68(8), 1690-1697.
Settanni, Palazzolo, Guarrasi, Aleo, Mammina, Moschetti, & Germanà. (2012). Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control, 26(2), 326-330.
Shen, Cai, Liu, Liu, Hui, & Su. (2009). Effect of temperature on uptake and survival of Vibrio parahaemolyticus in oysters (Crassostrea plicatula). International Journal of Food Microbiology, 136(1), 129-132.
Shih, Lai, Chen, & Wang. (1996). Occurrence of Vibrio parahaemolyticus in Imported Aquatic Foods from Mainland China. Journal of Food and Drug Analysis, 4(3), 239-246.
Shih, Shen, & Van. (2006). Microbial synthesis of poly (ε-lysine) and its various applications. Bioresource technology, 97(9), 1148-1159.
Shima, Matsuoka, Iwamoto, & Sakai. (1984). Antimicrobial Action of. ɛ-Poly-L-Lysine. The Journal of Antibiotics, 37, 1449-1455.
Shima, & Sakai. (1981). Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agricultural and Biological Chemistry, 45(11), 2497-2502.
Sobrinho, Destro, Franco, & Landgraf. (2014). A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil. International journal of food microbiology, 180, 69-77.
Su. (1986). Studies on the fate of Vibrio parahaemolyticus in oysters during transportation and selling and methods of control. Master's Thesis. Food Science. National Taiwan University, Taiwan.
Su, & Liu. (2007). Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology, 24(6), 549-558.
Tang, Mohd-Noor, Mazlan, Yeo, Abu-Bakar, & Radu. (2014). Survival of Vibrio cholerae O1 and Vibrio parahaemolyticus in fried and boiled Malaysian fish sausage. Food Control, 41, 102-105.
TFDA. (2013). Statistics of Food Poisoning Outbreak: 2008-2013. Taiwan Food and Drug Administrarion. Retrieved 2014/06/22, from http://www.fda.gov.tw/TC/siteContent.aspx?sid=323#.U6aKLPmSwy4
Tomotake, Koga, Yamato, Kassu, & Ota. (2006). Antibacterial activity of citrus fruit juices against Vibrio species. Journal of nutritional science and vitaminology, 52(2), 157-160.
Vanderzant, & Nickelson. (1972). Survival of Vibrio parahaemolyticus in shrimp tissue under various environmental conditions. Journal of Applied Microbiology, 23(1), 34-37.
44
Vasconcelos, & Lee. (1972). Microbial flora of Pacific oysters (Crassostrea gigas) subjected to ultraviolet-irradiated seawater. Appl Microbiol, 23(1), 11-16.
Vasudevan, Marek, Daigle, Hoagland, & Venkitanarayanan. (2002). Effect of chilling and freezing on survival of vibrio parahaemolyticus on fish fillets. Journal of Food Safety, 22(4), 209-217.
Viuda-Martos, Ruiz-Navajas, Fernández-López, & Pérez-Álvarez. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control, 19(12), 1130-1138.
Vose. (2000). Risk Analysis — a Quantitative Guide, 2nd ed. John Wiley & Sons, Ltd., England.
Vuddhakul, Chowdhury, Laohaprertthisan, Pungrasamee, Patararungrong, Thianmontri, Ishibashi, Matsumoto, & Nishibuchi. (2000). Isolation of a Pandemic O3:K6 Clone of a Vibrio parahaemolyticus Strain from Environmental and Clinical Sources in Thailand. Applied and Environmental Microbiology, 66(6), 2685-2689.
Wang, Li, & Li. (2015). Intervention Strategies for Reducing Vibrio Parahaemolyticus in Seafood: A Review. Journal of Food Science, 80(1), R10-R19.
Wang, Zhang, Chen, Yu, & Shi. (2010). Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment. International Journal of Food Microbiology, 137(1), 76-80.
Wong, Liu, Ku, Lee, Wang, Lee, Lee, Kuo, & Shih. (2000). Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. Journal of Food Protection, 63(7), 900-906.
Wong, Ting, & Shieh. (1992). Incidence of toxigenic vibrios in foods available in Taiwan. Journal of Applied Bacteriology, 73(3), 197-202.
Xie, Sun, Pan, & Zhao. (2012). Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp. Food research international, 47(2), 331-336.
Xu, Wu, Zhang, Cheng, Zhang, & Wu. (2014). Prevalence, pathogenicity, and serotypes of Vibrio parahaemolyticus in shrimp from Chinese retail markets. Food Control, 46, 81-85.
Yamamoto, Iwahori, Vuddhakul, Charernjiratragul, Vose, Osaka, Shigematsu, Toyofuku, Yamamoto, Nishibuchi, & Kasuga. (2008). Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. International Journal of Food Microbiology, 124(1), 70-78.
Yang, Jiao, Li, Pan, Huang, Gu, Fang, & Chao. (2009). Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature. Food Microbiology, 26(6), 606-614.
Yano, Satomi, & Oikawa. (2006). Antimicrobial effect of spices and herbs on Vibrio parahaemolyticus. International Journal of Food Microbiology, 111(1), 6-11.
Ye, Xu, Wan, Peng, Wang, Xu, Aguilar, Xiong, Zeng, & Wei. (2013). Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochemical and biophysical research communications, 439(1), 148-153.
Yoon, Min, Jung, Kwon, Lee, & Oh. (2008). A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiology, 25(5), 635-641.
Yoshida, & Nagasawa. (2003). ε-Poly-L-lysine: microbial production, biodegradation and application potential. Applied microbiology and biotechnology, 62(1), 21-26.
45
Yu. (2011). Tracking the change of Vibrio parahaemolyticus in marine aquacultures of Taiwan. Master's Thesis. Food Science. Soochow University, Taiwan.
Yu, Jong, Lin, Tsai, Tey, & Wong. (2013). Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. International Journal of Food Microbiology, 160(3), 185-192.
Zhao, Zhou, Cao, Ma, & Jiang. (2011). Distribution, serological and molecular charac-terization of Vibrio parahaemolyticus from shellfish in the eastern coast of China. Food Control, 22(7), 1095-1100.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊