跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮仕安
研究生(外文):Feng, Shi-An
論文名稱:幾丁聚醣及幾丁寡醣對大白鼠血糖及血脂之研究
論文名稱(外文):Studies of chitosan and chitosan oligosaccharide on blood glucose and lipids in rats
指導教授:江孟燦江孟燦引用關係劉興華劉興華引用關係
指導教授(外文):江孟燦 Chiang, Meng-Tsan劉興華 Liu, Shing-Hwa
口試委員:江文章林璧鳳姚賢宗
口試委員(外文):江文章 Chiang, Wen-Chang林璧鳳 Lin, Bi-Fong姚賢宗 Yao, Hsien-Tsung
口試日期:2016-06-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:149
中文關鍵詞:幾丁聚醣幾丁寡糖糞便細菌酵素血漿三酸甘油酯
外文關鍵詞:chitosanchitosan oligosacharidefecal bacteria enzyme activityplasma triglyceride
相關次數:
  • 被引用被引用:3
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
肥胖與糖尿病已成為全球性疾病,而台灣歷年的十大死因亦與此兩種代謝性疾病息息相關。至今,許多植物性或天然性化合物已成為改善代謝性疾病之候選保健食品。幾丁聚醣為葡萄糖胺構成之胺基多醣體,構造類似纖維素,但對於改善醣類及脂質代謝的能力皆優於纖維素,且會隨著分子量的大小及使用的時間長短有所差異,為了解幾丁聚醣及其衍生物對血糖及血脂的影響,大白鼠為實驗動物共分成兩個部分進行,第一部分在比較低分子量幾丁聚醣及幾丁寡醣對於醣類及脂質代謝的影響,第二部分則著重於探討比較長期與短期攝食幾丁聚醣對大白鼠血脂之研究,並觀察血醣及脂肪肝的改善情形。實驗皆以雄性 Sprague-Dawley (SD) 品系大白鼠進行,第一部分分成四組進行,分別為 (1) 正常飲食組 (normal control diet, NC). (2) 高脂飲食組 (high fat diet, HF). (3) 高脂飲食 + 5% 低分子量幾丁聚醣組 (High fat diet + 5% low molecular weight chitosan, HF+LC). (4) 高脂飲食 + 5% 幾丁寡醣組 (High fat diet + 5% chitosan oligosaccharide, HF+CO)。第一部分結果顯示,HF+LC 組在不影響攝食量的情況下能有效降低體重、肝臟重量 (包含降低肝臟脂肪含量及脂肪合成相關酵素 FAS 活性)、腎臟周圍脂肪組織重量、血漿 TC、Insulin、 TNF-α 濃度、Homa-IR 指標、糞便細菌酵素及小腸雙糖酶活性,增加糞便重量及糞便脂肪的排出量。HF+CO 組則是在不影響攝食量的情況下降低腎臟周圍脂肪組織重量、血漿 TG 濃度及糞便細菌酵素活性。第二部分則先分成長短期兩部分 (六週與十一週),各部分再分成五組,分別為 (1) 高脂飲食組 (Control diet, HF) (2) 高脂飲食 + 5% 幾丁聚醣組 (Control diet + 5% high molecular weight chitosan, CS) (3) 糖尿病 + 高脂飲食組 (Diabetes + Control diet, DM) (4) 糖尿病+高脂飲食+ Thiazolidinediones 組 (Diabetes + Control diet + 0.8mg/kg Thiazolidinediones, DM+TZD) (5) 糖尿病 + 高脂飲食 + 5% 幾丁聚醣組 (Diabetes + Control diet + 5% high molecular weight chitosan, DM+CS),短期 (六週) 結果顯示,CS 及 DM+CS 能在不影響攝食量的條件下,降低肝臟重量、腎臟周圍脂肪組織重量、LDL-C 濃度、ApoCIII 的蛋白表現量、肝臟中的脂肪含量、SREBP1c、PPARγ 的蛋白表現量及小腸 MTTP 蛋白質表現量,增加肝臟 pAMPK、PPARα、MTTP 的蛋白表現量、脂肪組織 HSL 活性及小腸 Angtl4 蛋白表現量,DM+CS 更能增加小腸的總長度、重量、降低血漿 Glucose、AST、TC 濃度及提升脂肪組織 LPL 的活性。長期的部分 (十一週) 結果則顯示,除了大部分結果與短期相符外,幾丁聚醣會能降低睪丸周圍脂肪組織重量、血漿 ALT、TNF-α、glucose、insulin 濃度、脂肪組織 LPL 活性,增加小腸重量、血漿 Angptl 4 表現量,DM+CS 更能降低血漿中 glucose、Homa-IR 指標。
綜合以上結果,在第一部分發現,餵食低分子量幾丁聚醣十週,對於改善胰島素抗性及增加脂質代謝能力有效,餵食幾丁寡醣十週,則是對於降低血漿三酸甘油脂有效,在糞便細菌酵素活性改善能力方面,幾丁寡醣及低分子量幾丁聚醣均是有效,而在第二部分發現,不管是 HF 或 DM 組餵食幾丁聚醣六周或十一週均會改善血脂及脂肪肝,但在餵食幾丁聚醣十一週後會降低 TNF-α 濃度,改善胰島素抗性,減少 insulin 分泌,提升血漿 Angptl 4 蛋白質表現量,進而抑制脂肪組織 LPL 活性,使血漿 TG 上升。

This study was designed to investigate the effects of chitosan and its derivatives on blood glucose and lipids in rats. Male Sprague-Dawley (SD) rats were used as experiment animals. There are two experiments in this study. In the experiment I, rats are divided into four groups: (1) Normal control diet (NC). (2) High fat diet (HF). (3) High fat diet + 5% low molecular weight chitosan (HF+LC). (4) High fat diet + 5% chitosan oligosaccharide (HF+CO). The experimental was done for 10 weeks. Low molecular weight chitosan supplementation significantly decreased body weight, liver weight, perirenal fat weight, plasma total cholesterol, plasma VLDL-cholesterol + LDL-cholesterol concentration, intestinal disaccharide (maltase and latase) and fecal bacteria enzyme (beta-glucuronidase) activity; and elevated feces weight and the excretion of fecal lipid (TG and TC). Chitosan oligosaccharide supplementation decreased perirenal fat weight, plasma TG concentration and fecal bacteria enzyme (beta-glucuronidase and mucinase) activity. In the experiment II, rats are divided into long- and short term parts (six and eleven weeks), and each parts divided into five groups: (1) Control diet (HF) (2) Control diet + 5% high molecular weight chitosan (CS) (3) Diabetes + Control diet (DM) (4) Diabetes + Control diet + 0.8mg/kg Thiazolidinediones (DM+TZD) (5) Diabetes + Control diet + 5% high molecular weight chitosan (DM+CS). The short term part results showed that high molecular weight chitosan supplementation significantly decreased liver weight, perirenal fat weight, plasma LDL-C concentration, plasma ApoCIII protein expression, hepatic lipids (TC and TG), hepatic protein expression (SREBP1c and PPARγ) and intestinal MTTP protein expression; and elevated hepatic protein expression (pAMPK, PPARα and MTTP), HSL activities and intestinal Angptl 4 protein expression. Most of the long term part results showed the same to the short term part except for plasma TNF-α and insulin concentration. Results from the first study suggest that Low molecular weight chitosan supplementation may reduce plasma total cholesterol via reducing the absorption of diet lipid and increasing fecal lipid contain, and its can also play an important role to lower fecal bacteria enzyme activity and intestinal disaccharides activities. The second results displayed that the high molecular weight chitosan supplementation may up-regulate the lipid metabolism to improve fatty liver at no matter long- or short term but decrease insulin resistance to increase plasma TG concentration at long term.
詞彙縮寫表 1
壹、 前言 2
貳、 文獻整理 4
一、肥胖症 (obesity) 4
1. 肥胖症的現況與定義 4
2. 肥胖與脂肪組織之關聯性 6
3. 肥胖與脂肪激素 (adipokines) 7
二、糖尿病 10
1. 糖尿病簡介 10
2. 糖尿病的診斷及分類 11
3. 糖尿病對醣類代謝及脂質代謝之影響 13
三、脂肪肝 (Fatty liver) 14
1. 脂肪肝之定義 14
2. 非酒精性脂肪肝病的致病機轉 15
3. 肝臟 VLDL 之分泌 17
四、高脂飲食 20
1. 定義 20
2. 高膽固醇飲食對脂質代謝之影響 20
3. 脂質代謝相關酵素 22
4. 脂質代謝相關基因蛋白 24
五、幾丁質與幾丁聚醣 28
1. 幾丁質之來源與分佈 28
2. 幾丁質與幾丁聚醣之結構 28
3. 幾丁質與幾丁聚醣之特性 30
4. 幾丁聚醣之應用 30
5. 幾丁聚醣對於脂質代謝之影響 31
6. 幾丁寡醣 33
六、AMP-activated protein kinase (AMPK) 之簡介 33
【第一章】高脂飲食中添加低分子量幾丁聚醣及幾丁寡醣對於大白鼠血醣、血脂及糞便細菌酵素活性之影響 35
壹、 實驗設計 36
1. 實驗動機 36
2. 實驗流程 36
貳、 實驗材料 38
1. 實驗動物 38
2. 實驗飼料 38
3. 幾丁聚醣 38
4. 實驗儀器 38
參、 實驗方法 40
1. 幾丁聚醣去乙醯度、黏度及平均分子量之測定 40
2. 動物分組 42
3. 動物飼養及樣品收集 42
4. 飼料配方 (表一) 43
5. 樣品分析 44
6. 統計分析 52
肆、 結果 53
伍、 討論 55
陸、 結論 58
【第二章】比較長期與短期攝食幾丁聚醣對大白鼠血糖、血脂與脂肪肝之研究 59
壹、 實驗設計 60
1. 實驗動機 60
2. 實驗流程 60
貳、 實驗材料 63
1. 實驗動物 63
2. 實驗飼料 63
3. 幾丁聚醣 63
4. 實驗儀器 64
參、 實驗方法 66
1. 幾丁聚醣去乙醯度、黏度及平均分子量之測定 66
2. 動物分組 66
3. 動物飼養及樣品收集 67
4. 飼料配方 (表二) 68
5. 樣品分析 69
6. 統計分析 76
肆、 結果 77
一、 短期攝食幾丁聚醣對大白鼠血糖、血脂與脂肪肝之研究 77
二、 長期攝食幾丁聚醣對大白鼠血糖、血脂與脂肪肝之研究 80
伍、 討論 83
一、 短期攝食幾丁聚醣對大白鼠血糖、血脂與脂肪肝之研究 83
二、 長期攝食幾丁聚醣對大白鼠血糖、血脂與脂肪肝之研究 87
陸、 結論 90
參考文獻 92


黃杉頁,2004。高、低分子量幾丁聚糖對STZ所誘發之糖尿病大白鼠醣代謝與脂質代謝之影響。國立台灣海洋大學食品科學系碩士論文。
謝侑霖,2010。幾丁聚醣影響streptozotocin-nicotinamide 誘發之耐糖不良大白鼠脂肪組織之研究。國立台灣海洋大學食品科學系碩士論文。
陳艷琳,2013。幾丁聚醣改善高脂飲食誘發大白鼠肥胖及脂肪肝之機制探討。國立台灣海洋大學食品科學系碩士論文。
張恬嘉,2014。幾丁聚醣與魚油改善高脂飲食引起的大鼠肥胖及脂肪肝之研究。國立台灣海洋大學食品科學系碩士論文。
蔡敏郎,1993。不同分子量、不同去乙醯程度的幾丁聚醣溶液的流變性質與膠囊物性的關係。國立臺灣海洋大學食品科學系碩士論文。
衛生福利部,2002。成人健康體位標準。台北。台灣。
衛生福利部,2014。民國103年國人十大死因統計。台北。台灣。
衛生福利部,2013B。台灣地區國民營養健康狀況變遷調查。台北。台灣。
American Diabetes Association (1997) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 27: S5-S10.
Arner P (1995) Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 27: 435-438.
Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K,Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273: 5678-5684.
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101: 15718-15723.
Balistreri CR, Caruso C, Candore G (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 80: 20-78.
Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6: 1-28.
Berger JJ, Barnard RJ (1999) Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol (1985) 87: 227-232.
Bessesen, D. H. (2001) The role of carbohydrates in insulin resistance. Journal of Nutrition 131: 2782-2786.
Bligh EG, Dyer WJ. (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911-7.
Brewer HB, Jr., Shulman R, Herbert P, Ronan R, Wehrly K (1974) The complete amino acid sequence of alanine apolipoprotein (apoC-3), and apolipoprotein from human plasma very low density lipoproteins. J Biol Chem 249: 4975-4984.
Brunt EM (2001) Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 21: 3-16.
Chae SY, Jang MK, Nah JW. (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release 102:383-94.
Carling D (2004) The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 29: 18-24.
Carlson SE, Goldfarb S (1977) A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clin Chim Acta 79: 575-582.
Carmen GY, Victor SM (2006) Signalling mechanisms regulating lipolysis. Cell Signal 18: 401-408.
Caro JF, Dohm LG, Pories WJ, Sinha MK (1989) Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes Metab Rev 5: 665-689.
Carruthers M, Trinick TR, Jankowska E, Traish AM (2008) Are the adverse effects of glitazones linked to induced testosterone deficiency? Cardiovasc Diabetol 7: 30.
Chancharme L, Therond P, Nigon F, Zarev S, Mallet A, Bruckert E, Chapman MJ (2002) LDL particle subclasses in hypercholesterolemia. Molecular determinants of reduced lipid hydroperoxide stability. J Lipid Res 43: 453-462.
Chen YD, Risser TR, Cully M, Reaven GM (1979) Is the hypertriglyceridemia associated with insulin deficiency caused by decreased lipoprotein lipase activity? Diabetes 28: 893-898.
Chiu CY, Chan IL, Yang TH, Liu SH, Chiang MT (2015) Supplementation of Chitosan Alleviates High-Fat Diet-Enhanced Lipogenesis in Rats via Adenosine Monophosphate (AMP)-Activated Protein Kinase Activation and Inhibition of Lipogenesis-Associated Genes. J. Agric. Food Chem. 63: 2979−2988
Choi, C.R.; Kim, E.K.; Kim, Y.S.; Je, J.Y.; An, S.H.; Lee, J.D.; Wang, J.H.; Ki, S.S.; Jeon, B.T.; Moon, S.H. (2012) Chitooligosaccharides decreases plasma lipid levels in healthy men. Int. J. Food Sci. Nutr. 63, 103–106.
Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC (1995) Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol 15: 963-971.
Coban N, Onat A, Guclu-Geyik F, Komurcu-Bayrak E, Sansoy V, Hergenc G, Can G Erginel-Unaltuna N (2012) Gender- and obesity-specific effect of apolipoprotein C3 gene (ApoCIII) -482C>T polymorphism on triglyceride concentration in Turkish adults. Clin Chem Lab Med 50: 285-292.
Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276: 12162-12168.
Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060.
Day CP (2006) From fat to inflammation. Gastroenterology 130: 207-210.
Day CP, James OF (1998) Steatohepatitis: a tale of two "hits"? Gastroenterology 114: 842-845.
Deuchi K, Kanauchi O, Shizukuishi M, Kobayashi E (1994) Decreasing effect of chitosan on the apparent fat digestibility by rats fed on a high-fat diet. BBB 58:1613-1616.
Ding Y, Zhu MA, Wang ZX, Zhu J, Feng JB, Li DS (2012) Associations of polymorphisms in the apolipoprotein APOA1-C3-A5 gene cluster with acute
Dijk W, Kersten S (2014) Regulation of lipoprotein lipase by Angptl 4. Trends Endocrinol Metab 25: 146-155.
Dowman JK, Tomlinson JW, Newsome PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM 103: 71-83.
Duval C, Muller M, Kersten S (2007) PPARalpha and dyslipidemia. Biochim Biophys Acta 1771: 961-971.
Evans K, Burdge GC, Wootton SA (2008) Tissue-specific stable isotope measurements of postprandial lipid metabolism in familial combined hyperlipidaemia. Atherosclerosis 197:164-70.
Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S (2008) Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134: 424-431.
Faust IM, Miller WH, Sclafani A, Aravich PF, Triscari J, Sullivan AC (1984) Diet-dependent hyperplastic growth of adipose tissue in hypothalamic obese rats. Am J Physiol 247: 1038-1046.
Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40: 185-194.
Fernandes, J.C.; Sereno, J.; Garrido, P.; Parada, B.; Cunha, M.F.; Reis, F.; Pintado, M.E.; Santos-Silva (2012) A. Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model. Mar. Drugs 10, 2661–2675.
Fisher RM, Coppack SW, Humphreys SM, Gibbons GF, Frayn KN (1995) Human triacylglycerol-rich lipoprotein subfractions as substrates for lipoprotein lipase. Clin Chim Acta 236: 7-17.
Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509.
Fon Tacer K, Rozman D (2011) Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids78: 39-76.
Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J) 83: 192-203.
Fukada Y, Kimura K, Ayaki Y (1991) Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids 26: 395-399.
Fungwe TV, Cagen L, Wilcox HG, Heimberg M (1992) Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res 33: 179-191.
Furukawa, S., Fujita, T. and Shimabukuro, M. (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation 114: 1752-1761.
Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink R, Wise J (2002) A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. J Am Coll Nutr 21: 428-433.
Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278: 34268-34276.
Ge H, Cha JY, Gopal H, Harp C, Yu X, Repa JJ, Li C (2005) Differential regulation and properties of angiopoietin-like proteins 3 and 4. J Lipid Res 46: 1484-1490.
Ginsberg, H. N. (2000) Insulin resistance and cardiovascular disease. The Journal of Clinical Investigation 106: 453-458.
Gleeson A, Anderton K, Owens D, Bennett A, Collins P, Johnson A, White D, Tomkin GH (1999) The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia 42: 944-948.
Gotto, A. M. (2002) Lipid management in diabetic patients: lessons from prevention trials. American Journal of Medicine 112: 19S-26S.
Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37: 693-707.
Guilherme, A., Virbasius, J. V., Puri, V. and Czech, M. P. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews. Molecular Cell Biology 9: 367-377.
Hardie DG (2004) The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117: 5479-5487.
Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546: 113-120.
Harish Prashanth KV and Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potentialdan overview. Treneds Food Sci Tech 18: 117-131.
Hoffler, U., Hobbie, K., Wilson, R., Bai, R., Rahman, A., Malarkey, D., Travlos, G. and Ghanayem, B. I. (2009) Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine 36: 311-325.
Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31: 1120-1124.
Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101: 2331-2339.
Hossain S, Rahman A, Kabir Y, Shams AA, Afros F, Hashimoto M (2007) Effects of shrimp (Macrobracium rosenbergii)-derived chitosan on plasma lipid profile and liver lipid peroxide levels in normo- and hypercholesterolaemic rats. Clin Exp Pharmacol Physiol 34: 170-176.
Hyysalo J, Stojkovic I, Kotronen A, Hakkarainen A, Sevastianova K, Makkonen J, Lundbom N, Rissanen A, Krauss RM, Melander O, Orho-Melander M, Yki-Jarvinen H (2012) Genetic variation in PNPLA3 but not APOCIII influences liver fat in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 27: 951-956.
Hyer, S. L. and Shehata, H. A. (2005) Gestational diabetes mellitus. Current Obstetrics & Gynaecology 15: 368-374.
Ide, T., Nakazawa, T., Mochizuki, T. and Murakami, K. (2000a) Tissue-specifi c actions of antidiabetic thiazolidinediones on the reduced fatty acid oxidation in skeletal muscle and liver of Zucker diabetic fatty rats. Metabolism 49: 521-25.
Ikeda I, Sugano M, Yoshida K, Sasaki E, Iwamoto Y, Hatano K. (1993) Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats. J Agric Food Chem 41:431-5.
Iwasaki T, Takahashi S, Takahashi M, Zenimaru Y, Kujiraoka T, Ishihara M, Nagano M, Suzuki J, Miyamori I. Naiki H, Sakai J, Fujino T, Miller N E, Yamamoto TT, Hattori H (2005) Deficiency of the very low-density lipoprotein (VLDL) receptors in streptozotocin-induced diabetic rats: insulin dependency of the VLDL receptor. Endocrinology 146: 3286-3294.
Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55: 675-709.
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotech Adv 29: 322-337
Jennings CD, Boleyn K, Bridges SR, Wood PJ, Anderson JW (1988) A comparison of the lipid-lowering and intestinal morphological effects of cholestyramine, chitosan, and oat gum in rats. Proc Soc Exp Biol Med 189: 13-20.
Jeong, S. and Yoon, M. (2009) Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice. Experimental and Molecular Medicine 41: 397-405.
Ju, C.; Yue, W.; Yang, Z.; Zhang, Q.; Yang, X.; Liu, Z.; Zhang, F. (2010) Antidiabetic effect and mechanism of chitooligosaccharides. Biol. Pharm. Bull 33, 1511–1516.
Kang, E. S., Kim, H. J., Ahu, C. W., Park, C. W., Cha, B. S., Lim, S. K., Kim, K. R. and Lee, H. C. (2005) Relationship of serum high sensitivity C-reactive protein to metabolic syndrome and microvascular complications in type 2 diabetes. Diabetes Research and Clinical Practice 69: 151-159.
Karhapää, P., Malkki, M. and Laakso, M. (1994) Isolated low HDL cholesterol. An insulin-resistant state. Diabetes 43: 411-417.
Kavo AE, Rallidis LS, Sakellaropoulos GC, Lehr S, Hartwig S, Eckel J, Bozatzi P I, Anastasiou-Nana M, Tsikrika P, Kypreos KE (2012) Qualitative characteristics of HDL in young patients of an acute myocardial infarction. Atherosclerosis 220: 257-264.
Keller H, Mahfoudi A, Dreyer C, Hihi AK, Medin J, Ozato K, Wahli W (1993) Peroxisome proliferator-activated receptors and lipid metabolism. Ann N Y Acad Sci 684: 157-173.
Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 3463: 603-610.
Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, Kim NG, Koh GY (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274: 26523-26528.
Kim, J.N.; Chang, I.Y.; Kim, H.I.; Yoon, S.P. (2009) Long-term effects of chitosan oligosaccharide in streptozotocin-induced diabetic rats. Islets 1, 111–116.
Kim K H, López-Casillas F, Bai D H, Luo X, Pape M E (1989) Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J 3:2250-2256.
Kim, K.I., Lee, W.S., Benevenga, N.J., (1998) Feeding diets containing high levels of milk products or cellulose decrease urease activity and ammonia production in rat intestine. J Nutr, 128, pp. 1186–1191
Kinnunen PK, Ehnolm C (1976) Effect of serum and C-apoproteins from very low density lipoproteins on human postheparin plasma hepatic lipase. FEBS Lett 65: 354-357.
Knorr and Dietrich. (1984) Use of chitinous polymers in food: A challenge for food research and development. Food Technol-Chicago. 38, pp. 85–97
Kosaka S, Takahashi S, Masamura K, Kanehara H, Sakai J, Tohda G, Okada E, Oida K, Iwasaki T, Hattori H, Kodama T, Yamamoto T, Miyamori I (2001) Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-gamma inhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages. Circulation 103: 1142-1147.
Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, Horikoshi H, Furukawa H (2002) Angptl 3 regulates lipid metabolism in mice. Nat Genet 30: 151-157.
Kumar, Ravi, Majeti NV (2000) A review of chitin and chitosan applications. React Funct Polym 46: 1-27.
Kumar Suresh G., AtiarRahman Md., Lee Sung Hak, Hwang HeeSun, Kim Hyun Ah, Yun Jong Won (2009) Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics 9: 2149–2162
Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol (NY) 8: 203-226.
Kusunoki M, Hara T, Tsutsumi K, Nakamura T, Miyata T, Sakakibara F, Sakamoto S, Ogawa H, Nakaya Y, Storlien LH (2000) The lipoprotein lipase activator, NO-1886, suppresses fat accumulation and insulin resistance in rats fed a high-fat diet. Diabetologia 43: 875-880.
Larsson M, Vorrsjo E, Talmud P, Lookene A, Olivecrona G (2013) Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets. J Biol Chem 288: 33997-34008.
Lazar MA (2005) PPAR gamma, 10 years later. Biochimie 87: 9-13.
Lehoux JG, Grondin F (1993) Some effect of chitosan on live function in the rat. Endocrinogy 132:1078-1084.
Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M. Gasc JM, Corvol P, Germain S (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162: 1521-1528.
Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123: 993-999.
Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96: 1221-1232.
Lewis GF, Uffelman K, Naples M, Szeto L, Haidari M, Adeli K (2005) Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian golden hamster. Endocrinology 146: 247-255.
Lim BO, Yamada K, Nonaka M, Kuramoto Y, Hung P, Sugano M (1997) Dietary fibers modulate indices of intestinal immune function in rats. J Nutr 127: 663-667.
Lin EC, Fernandez ML, McNamara DJ (1992) Dietary fat type and cholesterol quantity interact to affect cholesterol metabolism in guinea pigs. J Nutr 122: 2019-2029.
Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N (1999) Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry 38: 185-190.
Liu L, Ouyang D (2009) Function and clinical significance of microsomal triglyceride transfer protein. Int J Clin Exp Parho 29: 152-154.
Liu J, Zhang J, Xia W (2008) Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem 107: 419-425.
Liu, S. H., C, Y. H. and Chiang, M. T. (2010) Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry 58: 5795-5800.
Lopez-Velazquez JA, Carrillo-Cordova LD, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N (2012) Nuclear receptors in nonalcoholic Fatty liver disease. J Lipids 2012: 139-875.
Lu SN, Wang LY, Chang WY, Chen CJ, Su WP, Chen SC, Chuang WL, Hsieh MY (1990) Abdominal sonographic screening in a single community. Gaoxiong Yi Xue Ke Xue Za Zhi 6: 643-646.
Maezaki Y, Keisuke T, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa W ,Terada A, Hara H, Mitsuoka T (1993) Hypocholesterolemic effect of chitosan in adult males. BBB 57:1439-1444.
Mallett, A.K., Rowland, I.R., Bearne C.A., (1986) Influence of wheat bran on some reductive and hydrolytic activities of the rat cecal flora Nutr Cancer, 8, pp. 125–131.
Mathur NK, Narang CK (1990) Chitin and chitosan, versatile marine animal polysaccharides. J Chem Educ 67: 938-942.
Mathur Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, Horikoshi H, Furukawa H (2002) Angptl 3 regulates lipid metabolism in mice. Nat Genet 30: 151-157.
Mattijssen Frits, Alex Sheril, Hans J. Swarts, Groen Albert K, Schothorst Evert M. van, Kersten Sander (2014) Angptl 4 serves as an endogenous inhibitor of intestinal lipid digestion. Mol Metab 3: 135–144.
Michael WK (2013) AMPK: Master metabolic regulator. Retrieves May 15, 2014 from http://themedicalbiochemistrypage.org/ampk.php
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339-343.
Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors. Jama 289: 76-79.
Motta, M., Bennati, E., Ferlito, L. and Malaguarnera, M. (2006) Diabetes mellitus in the elderly : Diagnostic features. Archives of Gerontology and Geriatrics 42: 101-106.
Muzzarelli RAA, Rocchetti (1985) Determination of the degree of acetylation of chitosan by first derivative ultraviolet spectrophotometry. Carbohyd Polym 5: 461-472.
National Center for Chronic Disease Prevention and Health Promotion (2014) 2014 National Diabetes Statistics Report Retrieves August 17, 2015 from http://www.cdc.gov/diabetes/data/statistics/2014statisticsreport.html
Nelson GJ (1972) Blood lipids and lipoproteins: quantitation, composition, and metabolism. Wiley-Interscience. New York,U S A.
Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37: 1202-1219.
Niemeier A, Gafvels M, Heeren J, Meyer N, Angelin B, Beisiegel U (1996) VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res 37: 1733-1742.
Niu, J; Lin, H.Z; Jiang, S.G; Chen, X; Wu, K.C; Liu, Y.J; Wang, S; Tian, L.X. (2013) Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372–375, 1–8.
Oike Y, Akao M, Kubota Y, Suda T (2005) Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11: 473-479.
Oike Y, Ito Y, Maekawa H, Morisada T, Kubota Y, Akao M, Urano T, Yasunaga K Suda T (2004) Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103: 3760-3765.
Ono M, Shimizugawa T, Shimamura M, Yoshida K, Noji-Sakikawa C, Ando Y, Koishi R, Furukawa H (2003) Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL 3): ANGPTL 3 is cleaved and activated in vivo. J Biol Chem 278: 41804-41809.
Phillips C, Bennett A, Anderton K, Owens D, Collins P, White D, Tomkin GH (2002 (A)) Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidemia in diabetes. Metabolism 51: 847-852.
Phillips C, Owens D, Collins P, Tomkin GH (2002 (B)) Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis 160: 355-360.
Quintao EC, Sperotto G (1987) The role of dietary cholesterol in the regulation of human body cholesterol metabolism. Adv Lipid Res 22: 173-188.
Robertson, R. P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry 279: 42351-42354.
Romao JM, Jin W, Dodson MV, Hausman GJ, Moore SS, Guan LL (2011) MicroRNA regulation in mammalian adipogenesis. Exp Biol Med (Maywood) 236: 997-1004.
Rutter GA, Da Silva Xavier G, Leclerc I (2003) Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 375: 1-16.
Schoonjans, K., Staels, B., Auwerx, J. (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochimica et Biophysica Acta 1302: 93-109.
Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266: 18259-18267.
Sell H, Berger JP, Samson P, Castriota G, Lalonde J, Deshaies Y, Richard D (2004) Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145: 3925-3934.
Semenkovich, C. F. and Heinecke, J. W. (1997) The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes 46: 327-334.
Sessions VA, Salter AM (1994) The effects of different dietary fats and cholesterol on serum lipoprotein concentrations in hamsters. Biochim Biophys Acta 1211: 207-214.
Sethi JK, Hotamisligil GS (1999) The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 10: 19-29.
Shiau, S.Y., Chang, G.W., (1983) Effects of dietary fiber on fecal mucinase and β-glucuronidase activity in rats. J Nutr, 113, pp. 138–144
Shimamura M, Matsuda M, Kobayashi S, Ando Y, Ono M, Koishi R, Furukawa H, Makishima M, Shimomura I (2003) Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem Biophys Res Commun 301: 604-609.
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99: 846-854.
Sparks JD, Sparks CE (2008) Overindulgence and metabolic syndrome: is FoxO1 a missing link? J Clin Invest 118: 2012-2015.
Sparks JD, Sparks CE, Adeli K. (2012) Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 32:2104-12.
Stryer L. (1998) Biochemistry, 3rd edn. Academic press, U S A.
Sugano M, Fujikawa Y, Hiratsuji K, Nakashima N, Hasegawa Y (1980). A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutr 33: 787-793.
Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 103: 17450-17455.
Sumiyoshi M, Kimura Y (2006) Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J Pharm Pharmacol 10.1211/jpp.58.2.0007.
Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT (2004) The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 11: 200-208.
Takahashi S, Suzuki J, Kohno M, Oida K, Tamai T, Miyabo S, Yamamoto T, Nakai T (1995) Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. J Biol Chem 270: 15747-15754.
Takehisa F, Suzuki Y (1990) Effect of guar gum and cholestyramine on plasma lipoprotein cholesterol in rats. J Jpn Soc Food Sci 43: 269-274.
Tamura S, Shimomura I (2005) Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest 115: 1139-1142.
Taskinen MR, Adiels M, Westerbacka J (2012) Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler Thromb Vasc Biol 31:2144e50.
Toei K, Kohara T (1976) A conductometric method for colloid titrations. Anal Chim Acta 83: 59-65.
Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60: 329-339.
Valenti L, Nobili V, Al-Serri A, Rametta R, Leathart JB, Zappa MA, Dongiovanni P, Fracanzani AL, Alterio A, Roviaro G, Daly AK, Fargion S,Day CP (2011) The ApoCIII T-455C and C-482T promoter region polymorphisms are not associated with the severity of liver damage independently of PNPLA3 I148M genotype in patients with nonalcoholic fatty liver. J Hepatol 55: 1409-1414.
Van de Velde K, Kiekens P (2004) Structure analysis and degree of substitution of chitin, chitosan and debutyrylchitin by FT-IR spectroscopy and solid state C-13 NMR. Carbohyd Polym 58: 409-416.
Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75: 384-390.
Wang W, Bo SQ, Li SQ, Qin W (1991) Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int J Biol Macromol 13: 281-285.
Wanless IR, Lentz JS (1990) Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12: 1106-1110.
Watson KE, Horowitz BN, Matson G (2003) Lipid abnormalities in insulin resistant states. Rev Cardiovasc Med 4: 228-236.
Walsh, A.M.; Sweeney, T.; Bahar, B.; Flynn, B.; O’Doherty, J.V. (2012) The effect of chitooligosaccharide supplementation on intestinal morphology, selected microbial populations, volatile fatty acid concentrations and immune gene expression in the weaned pig. Animal 6, 1620–1626.
Westerbacka, J.; Kolak, M.; Kiviluoto, T.; Arkkila, P.; Sirén, J.; Hamsten, A.; Fisher, R. M.; Yki-Järvinen, H. (2007) Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 56: 2759−2765.
White DA, Bennett AJ, Billett MA, Salter AM (1998) The assembly of triacylglycerol-rich lipoproteins: an essential role for the microsomal triacylglycerol transfer protein. Br J Nutr 80: 219-229.
Wickelgren I (1998) Obesity: How big a problem? Science 280: 1364-1367.
Windler E, Havel RJ (1985) Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res 26: 556-565.
Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL (1980) The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem 255: 10464-10471.
World Health Organizaton (2004) BMI classification. Global database on body mass index. Retrieves May 15, 2004 from http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
World Health Organizaton (2005) The World Health Organizaton warns of the rising threat of heart disease and stroke as overwight and obesity rapidly increase. Retrieves May 11, 2014 from http://apps.who.int/mediacentre/news/releases/2005/pr44/en/.
World Health Organization (2006) Data and statistics, diabetes, definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Retrieved June 27, 2009 from http://www.who.int/diabetes/facts/en/index.html.
World Health Organizaton (2015) Obesity and overweight. Retrieves August 17, 2015 from http://www.who.int/mediacentre/factsheets/fs311/en/
Xu G, Huang X, Qiu L, Wu J, Hu Y (2007 (B)) Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac J Clin Nutr 16 Suppl 1: 313-317.
Yamada, T, Ozaki N, Kato Y, Miura Y, Oiso Y (2006) Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 347, 1138–1144.
Yamamoto T, Takahashi S, Sakai J, Kawarabayasi Y (1993) The very low density lipoprotein receptor A second lipoprotein receptor that may mediate uptake of fatty acids into muscle and fat cells. Trends Cardiovasc Med 3: 144-148.
Yang, Y.; Liu, M.; Gu, Y.; Lin, S.; Ding, F.; Gu, X. (2009) Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol. Int. 33, 352–356.
Yang PM, Huang GT, Sheu JC, Hung CM, Lin YM, Lai MY,Chen DS, Sung JL (1986) Mass screening of hepatobiliary diseases by real-time ultrasonography. Taiwan Yi Xue Hui Za Zhi 85: 1144-1150.
Yan, Y.; Wanshun, L.; Baoqin, H.; Bing, L.; Chenwei, F. (2006) Protective effects of chitosan oligosaccharide and its derivatives against carbon tetrachloride-induced liver damage in mice. Hepatol. Res. 35, 178–184.
Yao HT, Chiang MT. (2006) Chitosan shifts the fermentation site toward the distal colon and increases the fecal short-chain fatty acids concentrations in rats. Int J Vitam Nutr Res 76: 57-64.
Yao HT, Huang SY, Chiang MT (2008) A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem Toxicol 46: 1525-1534.
Younes, I.; Rinaudo, M. (2015) Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 13, 1133–1174.
Zander M1, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 824-30
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432.
Zeng L, Qin C, Wang W, Chi W, Li W (2008) Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers 71. 435–440.
Zheng C (2014) Updates on apolipoprotein CIII: fulfilling promise as a therapeutic target for hypertriglyceridemia and cardiovascular disease. Curr Opin Lipidol 25: 35-39.
Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, Andrea FD, Molinari AM, Giugliano D (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105: 804-809.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top