跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張有婷
研究生(外文):Chang, You-Ting
論文名稱:幾丁質奈米纖維、去乙醯幾丁質奈米纖維及幾丁質奈米晶體之製備及流變性質
論文名稱(外文):Preparation and rheological properties of chitin nanofibers, deacetylation chitin nanofibers, and chitin nanocrystals
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):Tsai, Min-Lang
口試委員:董崇民糜福龍陳榮輝
口試委員(外文):Don, Trong-mingMi, Fwu-LongChen, Ronf-Huei
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:幾丁質奈米纖維去乙醯幾丁質奈米纖維幾丁質奈米晶體成膠溫度流變性質
外文關鍵詞:chitin nanofibersdeacetylation chitin nanofiberchitin nanocrystalsgelling temperaturerheological propertie
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
幾丁質奈米纖維(CNF)為幾丁質以超音波法處理而得,長徑比(aspect ration, L/d) 較大,去乙醯幾丁質奈米纖維(CNFde)經去乙醯步驟處理,胺基暴露較多,質子化後胺基正電荷較多,靜電斥力較大,而幾丁質奈米晶體(CNC)為幾丁質經酸水解處理而得,具液晶型態為短棒狀,長徑比也較奈米纖維小。本研究目的為利用動態流變儀探討樣品濃度、氯化鈉濃度、pH值、溫度、去乙醯度及長徑比對幾丁質、去乙醯幾丁質奈米纖維及幾丁質奈米晶體流變性質之影響。由TEM圖計算出,CNF之平均長為598.6±302.5 nm,直徑為23.6±8.0 nm,長徑比為25.4,CNFde之平均長為407.8±192.2 nm,直徑為28.8±8.0 nm,長徑比為14.1;CNC之平均長為136.5±59.7 nm,直徑為29.4±8.5 nm,長徑比為4.6。由FTIR圖譜計算,CNF、CNFde、CNC的去乙醯度分別為15.06±0.42%、28.98±6.02%、8.31±2.59%。由X光繞射圖譜得知,幾丁質奈米纖維之結晶度最高,經過去乙醯處理奈米纖維及酸水解破壞結晶區之奈米晶體結晶度較低,而三種樣品在2θ為9.17o及19.03o皆有明顯波鋒。流變儀測得結果得知CNF、CNCde、CNC之儲存模數(G’)會隨著樣品濃度、pH值、氯化鈉濃度、溫度、長徑比增加而增加,隨去乙醯程度增加而減少。在相同條件下,去乙醯程度較高之CNFde、長徑比較小之CNC較不易成膠。
Chitin nanofiber (CNF) was prepared by ultrasound treatment through chitin, which that aspect ratio (aspect ration, L / d) was large. Deacetylated chitin nanofiber (CNFde) went through deacetylation process first, and then were prepared by ultrasound treatment. It’s amine group exposed more than CNF. Under acid environment, amine group will been protonated and become positively charged amino group, which had electrostatic repulsion. Chitin nanocrystals (CNC) were prepared by acid hydrolysis of chitin. It exhibited rod-like liquid crystal behavior, and the aspect ratio was small than CNF. The aim of this study is to studied rheological properties of CNF, CNFde, and CNC under diffenent conditions of sample concentration, sodium chloride concentration, pH, temperature, degree of acetylation and aspect ratio. Calculated by TEM, the average length of CNF was 598.6 ± 302.5 nm, diameter of CNF was 23.6 ± 8.0 nm, and aspect ratio was 25.4. Average length of CNFde was 407.8 ± 192.2 nm, diameter of CNFde was 28.8 ± 8.0 nm, and aspect ratio was 14.1; the average length of the CNC was 136.5 ± 59.7 nm, diameter of CNC was 29.4 ± 8.5 nm, and aspect ratio was 4.6. Degree of deacetylation were calculated from the FTIR spectrum. CNF, CNFde, and CNC were respectively 15.06 ± 0.42%, 28.98 ± 6.02%, and 8.31 ± 2.59%. Degree of crystallinity were calculated from the X-ray diffraction. Degree of crystallinity of CNF were highest, and CNFde and CNC were lower. 2θ of three samples were in 9.17o and 19.03o. Storage modulus (G ') of CNF, CNCde, CNC will be different with concentration of sample, pH, concentration of NaCl, temperature, degree of deacetylation and aspect ratio. Under the same conditions, CNFde which were higher degree of acetylation, and CNC which were smaller aspect ratio were hard to be gel.
目次
摘要 I
表目錄 V
圖目錄 VI
附圖目錄 VIII
一、前言 1
二、文獻回顧 3
2.1.幾丁質 3
2.1.1.幾丁質的結構 3
2.1.2.幾丁質的特性及應用 3
2.1.3.α-幾丁質的製備 4
2.2.幾丁質奈米纖絲(chitin nanowhiskers) 4
2.2.1.α-幾丁質奈米纖維(chitin nanofibers) 5
2.2.1.1.α-幾丁質奈米纖維的結構 5
2.2.1.2.α-幾丁質奈米纖維的製備 5
2.2.2.去乙醯α-幾丁質奈米纖維(deacetylated chitin nanofibers) 5
2.2.2.1.去乙醯α-幾丁質奈米纖維的結構 5
2.2.2.2.去乙醯α-幾丁質奈米纖維的製備 6
2.2.3.α-幾丁質奈米晶體(chitin nanocrystals) 6
2.2.3.1.α-幾丁質奈米晶體的結構 6
2.2.3.2.α-幾丁質奈米晶體的特性及應用 6
2.2.3.3.α-幾丁質奈米晶體的製備 7
2.4.水膠 7
2.4.1.水膠的定義及分類 7
2.4.2.水膠的特性及應用 7
2.5.添加氯化鈉之交互作用 8
2.6.流變性質 8
三、實驗材料 10
3.1.實驗原料 10
3.2.實驗藥品 10
3.3.實驗儀器設備 10
四、實驗架構與方法 12
4.1.樣品前處理 13
4.2.幾丁質奈米纖維之製備(超音波震盪法) 13
4.3.去乙醯幾丁質奈米纖維之製備(部分去乙醯法) 13
4.4.幾丁質奈米晶體之製備(酸水解法) 14
4.5.物化特性之分析 14
4.5.1.穿透式電子顯微鏡觀察(TEM) 14
4.5.2.高解析度場發射掃描式電子顯微鏡觀察(HRFESEM) 14
4.5.3.原子力顯微鏡觀察(AFM) 14
4.5.4.官能基及去乙醯度之測定(FTIR) 15
4.5.5.元素分析 15
4.5.6.界面電位測定(Zeta-Potential) 16
4.5.7.結晶度測定(XRD) 16
4.6.流變性質測定 16
4.7.統計分析 16
五、結果與討論 17
5.1幾丁質奈米纖絲之型態觀察與長徑比 17
5.1.1.穿透式電子顯微鏡觀察(TEM) 17
5.1.2原子力顯微鏡觀察(AFM) 17
5.1.3.高解析度場發射掃描式電子顯微鏡觀察(HRFESEM) 18
5.2.官能基及去乙醯度測定(FTIR) 18
5.3.去乙醯度測定(EA) 18
5.4.界面電位測定(Zeta-Potential) 19
5.5.結晶度測定(XRD) 19
5.6.流變性質測定 20
5.6.1.濃度影響 20
5.6.2.pH值影響 21
5.6.3.氯化鈉濃度影響 22
5.6.4.溫度影響 22
5.6.5.去乙醯度影響 23
5.6.6.長徑比影響 23
5.6.7.成膠溫度 24
六、結論 25
七、參考文獻 26
八、表 30
九、圖 35
十、附圖 58


表目錄
表 一、幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)之長徑比(L/d) 30
表 二、幾丁質、去乙醯幾丁質、幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)之去乙醯程度 31
表 三、pH值及氯化鈉濃度對幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)的界面電位(mV)之影響 32
表 四、幾丁質、去乙醯幾丁質、幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)之結晶程度 33
表 五、幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)於不同濃度、pH值、氯化鈉濃度下之成膠溫度 34

圖目錄
圖 一、凍乾前之幾丁質奈米纖維(A)、去乙醯幾丁質奈米纖維(B)、幾丁質奈米晶體(C)及凍乾後之幾丁質奈米纖維(D)、去乙醯幾丁質奈米纖維(E)、幾丁質奈米晶體(F)。 35
圖 二、幾丁質奈米纖維 x 5k (A)、x 10k (B)、去乙醯幾丁質奈米纖維 x 10k (C)、幾丁質奈米晶體 x 10k (D) 之穿透式電子顯微鏡圖。 36
圖三、幾丁質奈米纖維長(A)、直徑(B)、去乙醯幾丁質奈米纖維長(C)、直徑(D)、幾丁質奈米晶體長(E)、直徑(F)分佈。 37
圖四、幾丁質奈米纖維(A)、去乙醯幾丁質奈米纖維(B)、幾丁質奈米晶體(C) 之原子力顯微鏡圖。 38
圖五、幾丁質奈米纖維x 2k (A)、x 50k (B)、去乙醯幾丁質奈米纖維x 2k (C)、x 50k (D)、幾丁質奈米晶體x 500 (E)、x 5k (F)之高解析度場發射掃描式電子顯微鏡圖。 39
圖 七、幾丁質、去乙醯幾丁質、幾丁質奈米纖維(CNF)、去乙醯幾丁質奈米纖維(CNFde)、幾丁質奈米晶體(CNC)之X光繞射圖譜。 41
圖 八、不同濃度幾丁質奈米纖維於pH 6.5、添加154 mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 0.8、(B) 1.2、(C) 1.6、(D) 2.4、(E) 2.8、(F) 3.2 mg/mL。 42
圖 九、不同濃度幾丁質奈米纖維於pH 6.5、添加154 mM氯化鈉之損失正切(Tanδ = G’’/G’):(A) 0.8、(B) 1.2、(C) 1.6、(D) 2.4、(E) 2.8、(F) 3.2 mg/mL。 43
圖 十、不同濃度幾丁質奈米纖維於pH 3、添加154 mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 1.6、(B) 2.4、(C) 3.2 mg/mL;損失正切(Tanδ):(D) 1.6、(E) 2.4、(F) 3.2 mg/mL。 44
圖 十一、不同濃度去乙醯幾丁質奈米纖維於pH 6.5、添加154mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 3.2、(B) 2.4、(C) 1.6;損失正切(Tanδ):(D) 3.2、(E) 2.4、(F) 1.6 mg/mL。 45
圖 十二、不同濃度幾丁質奈米晶體於pH 3、添加154mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 1.6、(B) 2.4、(C) 3.2、(D) 4.0 mg/mL;損失正切(Tanδ):(E) 1.6、(F) 2.4、(G) 3.2、(H) 4.0 mg/mL。 46
圖 十三、不同濃度幾丁質奈米纖維於pH 6.5 (A)、幾丁質奈米纖維於pH 3 (B)、去乙醯幾丁質奈米纖維於pH 6.5 (C)、幾丁質奈米晶體於pH 3 (D) 添加154 mM氯化鈉之儲存模數(G’)。 47
圖 十四、不同pH值幾丁質奈米纖維 (3.2 mg/mL) 添加154mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) pH 6.5、(B) pH 5、(C) pH 3;損失正切(Tanδ):(E) pH 6.5、(F) pH 5、(G) pH 3。 48
圖 十五、不同pH值去乙醯幾丁質奈米纖維 (3.2 mg/mL) 添加154mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) pH 6.5、(B) pH 5、(C) pH 3;損失正切(Tanδ):(E) pH 6.5、(F) pH 5、(G) pH 3。 49
圖 十六、不同pH值幾丁質奈米晶體 (3.2 mg/mL) 添加154mM氯化鈉之儲存模數(G’)與損失模數(G’’):(A) pH 6.5、(B) pH 5、(C) pH 3;損失正切(Tanδ):(E) pH 6.5、(F) pH 5、(G) pH 5。 50
圖 十七、不同pH值之幾丁質奈米纖維(A)、去乙醯幾丁質奈米纖維(B)、幾丁質奈米晶體(C),濃度皆為3.2 mg/mL、添加154mM氯化鈉之儲存模數(G’)。 51
圖 十八、幾丁質奈米纖維懸浮液(A)、去乙醯幾丁質奈米纖維懸浮液(B)、幾丁質奈米晶體懸浮液(C)、添加154 mM氯化鈉之幾丁質奈米纖維懸浮液(D)、添加154 mM氯化鈉之去乙醯幾丁質奈米纖維懸浮液(E)、添加154 mM氯化鈉之幾丁質奈米晶體懸浮液(F)。 52
圖 十九、幾丁質奈米纖維(3.2 mg/mL) 於pH 6.5下添加不同濃度氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 0 mM、(B) 5 mM、(C) 50 mM、(D) 154 mM;損失正切(Tanδ):(E) 0 mM、(F) 5 mM、(G) 50 mM、(H) 154 mM。 53
圖 二十、去乙醯幾丁質奈米纖維(3.2 mg/mL) 於pH 6.5下添加不同濃度氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 0 mM、(B) 75 mM、(C) 154 mM;損失正切(Tanδ):(D) 0 mM、(E) 75 mM、(F) 154 mM。 54
圖 二十一、幾丁質奈米晶體(3.2 mg/mL)於pH 6.5下添加不同濃度氯化鈉之儲存模數(G’)與損失模數(G’’):(A) 0 mM、(B) 75 mM、(C) 154 mM;損失正切(Tanδ):(D) 0 mM、(E) 75 mM、(F) 154 mM。 55
圖 二十二、添加不同濃度氯化鈉之幾丁質奈米纖維(A)、去乙醯幾丁質奈米纖維(B)、幾丁質奈米晶體(C),濃度皆為3.2 mg/mL於pH 6.5下之儲存模數(G’)。 56
圖二十三、比較幾丁質奈米纖維(A)、去乙醯幾丁質奈米纖維(B)、幾丁質奈米晶體(C)濃度皆為3.2 mg/mL、於pH 6.5下、添加154mM氯化鈉之儲存模數(G’)。 57


附圖目錄
附圖 一、幾丁質和幾丁聚醣之結構 58
附圖 二、α-幾丁質和β-幾丁質之分子鏈排列 59
附圖 三、濃度影響成膠機制示意圖 60
附圖 四、pH值影響成膠機制示意圖 61
附圖 五、NaCl影響成膠機制示意圖 62
附圖 六、溫度影響成膠機制示意圖 63
附圖 七、去乙醯度影響成膠機制示意圖 64
附圖 八、長徑比影響成膠機制示意圖 65


江宛柔,2015,利用幾丁質奈米纖維提升NaCl之鹹味,國立臺灣海洋大學食品科學系碩士論文,基隆,臺灣。
張正昇,2002,幾丁聚醣液晶性質之探討及其於輸藥系統上的應用,國立臺灣海洋大學食品科學系碩士論文,基隆,臺灣。
葉文燕,2015,幾丁質奈米纖維之製備及其生物活性,國立臺灣海洋大學食品科學系碩士論文,基隆,臺灣。
Abe, K., Ifuku, S., Kawata, M., & Yano, H. (2014). Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose, 21(1), 535-540.
Chang, C., Chen, S., & Zhang, L. (2011). Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry, 21(11), 3865-3871.
Chang, C., Peng, N., He, M., Teramoto, Y., Nishio, Y., & Zhang, L. (2013). Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 91(1), 7-13.
Chen, C., Li, D., Yano, H., & Abe, K. (2014). Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose, 21(5), 3339-3346.
Dang, J. M., Sun, D. D., Shin-Ya, Y., Sieber, A. N., Kostuik, J. P., & Leong, K. W. (2006). Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials, 27(3), 406-418.
Fan, Y., Saito, T., & Isogai, A. (2007). Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules, 9(1), 192-198.
Fan, Y., Saito, T., & Isogai, A. (2008). Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules, 9(7), 1919-1923.
Fan, Y., Saito, T., & Isogai, A. (2009). TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils. Carbohydrate Polymers, 77, 832–838.
Fan, Y., Saito, T., & Isogai, A. (2010). Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydrate Polymers, 79, 1046–1051.
Fan, Y., Fukuzumi, H., Saito, T., & Isogai, A. (2012). Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. International Journal of Biological Macromolecules, 50(1), 69-76.
Goodrich, J. D., &Winter, W. T. (2007). α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules, 8, 252–257.
Hu, X., Du, Y., Tang, Y., Wang, Q., Feng, T., Yang, J., & Kennedy, J. F. (2007). Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 70(4), 451-458.
Hu, X., Tang, Y., Wang, Q., Li, Y., Yang, J., Du, Y., & Kennedy, J. F. (2011). Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 83(3), 1128-1133.
Hackman, R. (1954). Studies on chitin I. Enzymic degradation of chitin and chitin esters. Australian Journal of Biological Sciences, 7(2), 168-178.
Izumi, R., Komada, S., Ochi, K., Karasawa, L., Osaki, T., Murahata, Y., & Ifuku, S. (2015). Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydrate Polymers, 123, 461-467.
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2009). Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules, 10(6), 1584-1588.
Ifuku, S., Nogi, M., Yoshioka, M., Morimoto, M., Yano, H., & Saimoto, H. (2010). Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydrate Polymers, 81, 134–139.
Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011a). Preparation of chitin nanofibers from mushrooms. Materials, 4, 1417–1425.
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., &Yano, H. (2011b). Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydrate Polymers, 762–764.
Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4(11), 3308-3318.
Ifuku, S., Yamada, K., Morimoto, M., & Saimoto, H. (2012). Nanofibrillation of dry chitin powder by Star Burst System. Journal of Nanomaterials, 2012, 1–7.
Kadokawa, J. I. (2013). Ionic liquid as useful media for dissolution, derivatization, and nanomaterial processing of chitin. Green and Sustainable Chemistry, 2013, 3, 19-25.
Li, J., Revol, J.-F., Naranjo, E., & Marchessault, R. H. (1996). Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. International Journal of Biological Macromolecules, 18, 177–187.
Li, J., Revol, J. F., & Marchessault, R. H. (1997). Effect of degree of deacetylation of chitin on the properties of chitin crystallites. Journal of Applied Polymer Science, 65(2), 373-380.
Li, J., Revol, J.-F., & Marchessault, R. H. (1996). Rheological properties of aqueous suspensions of chitin crystallites. Journal of Colloid and Interface Science, 183, 365–373.
Lu, Y., Sun, Q., She, X., Xia, Y., Liu, Y., Li, J., &Yang, D. (2013). Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydrate Polymers, 98, 1497–1504.
Mincea, M., Negrulescu, A., & Ostafe, V. (2012). Preparation, modification, and application of chitin nanowhiskers: a review. Reviews on Advanced Materials Science, 30, 225–242.
Mushi, N. E., Butchosa, N., Salajkova, M., Zhou, Q., & Berglund, L. A. (2014). Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydrate Polymers, 112, 255–263.
Nata, I. F., Wang, S. S. S., Wu, T. M., & Lee, C. K. (2012). Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter, 8(13), 3522-3525.
Nata, I. F., Wang, S. S. S., Wu, T. M., & Lee, C. K. (2012). β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydrate Polymers, 90(4), 1509-1514.
Pereira, A. G., Muniz, E. C., & Hsieh, Y. L. (2014). Chitosan-sheath and chitin-core nanowhiskers. Carbohydrate Polymers, 107, 158-166.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.
Rwei, S. P., Chen, T. Y., & Cheng, Y. Y. (2005). Sol/gel transition of chitosan solutions. Journal of Biomaterials Science, Polymer Edition, 16(11), 1433-1445.
Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2015). Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydrate Polymers, 116, 286-291.
Shaw, D. J., & Costello, B. (1993). Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford, 1991.
Shen, X., Shamshina, J. L., Berton, P., Gurau, G., & Rogers, R. D. (2016). Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18(1), 53-75.
Tang, H., Chen, H., Duan, B., Lu, A., & Zhang, L. (2014). Swelling behaviors of superabsorbent chitin/carboxymethyl cellulose hydrogels. Journal of Materials Science, 49(5), 2235-2242.
Tang, Y. F., Du, Y. M., Hu, X. W., Shi, X. W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly (vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491-499.
Vodná, L., Bubenikova, S., & Bakoš, D. (2007). Chitosan based hydrogel microspheres as drug carriers. Macromolecular Bioscience, 7(5), 629-634.
Wu, J., Su, Z. G., & Ma, G. H. (2006). A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. International Journal of Pharmaceutics, 315(1), 1-11.
Xu, X., Liu, W., & Zhang, L. (2006). Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloids, 20(5), 723-729.
Yen, M. T., Yang, J. H., & Mau, J. L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1), 15-21.
Yilmaz, E., & Bengisu, M. (2003). Preparation and characterization of physical gels and beads from chitin solutions. Carbohydrate polymers, 54(4), 479-488.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13(3), 1133-1174.
Zhang, Y., Xue, C., Xue, Y., Gao, R., & Zhang, X. (2005). Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate research, 340(11), 1914-1917.
Zeng, J. B., He, Y. S., Li, S. L., & Wang, Y. Z. (2011). Chitin whiskers: An overview. Biomacromolecules, 13(1), 1-11.
Zhao, H.-P., Feng, X.-Q., & Gao, H. (2007). Ultrasonic technique for extracting nanofibers from nature materials. Applied Physics Letters, 90, 073112.
Zhang, H., Yang, J., & Zhao, Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT-Food Science and Technology, 60(1), 253-262.
Zhou, H. Y., Chen, X. G., Kong, M., Liu, C. S., Cha, D. S., & Kennedy, J. F. (2008). Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydrate Polymers, 73(2), 265-273.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top