跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佩君
研究生(外文):Chen, Pei-Chun
論文名稱:微泡沫型臭氧水之殺菌效果評估與潛在應用研究
論文名稱(外文):Antimicrobial Effects of Ozonated Microbubble and Its Potential Applications
指導教授:張正明張正明引用關係
指導教授(外文):Chang, Cheng-Ming
口試委員:宋文杰林昱文張正明
口試委員(外文):Sung, Wen-ChiehYu-Wen LinChang, Cheng-Ming
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:臭氧微泡沫殺菌架售期
外文關鍵詞:ozonemicrobubblesanitizing effecshelf life
相關次數:
  • 被引用被引用:1
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:186
  • 收藏至我的研究室書目清單書目收藏:0
微泡沫型臭氧水有別於傳統臭氧水,可以提高臭氧溶於水的溶解度增加其使用效率,目前在食品及農業領域以逐漸被關注。本研究旨在探討0.6 mg/L與1.0 mg/L微泡沫型臭氧水,配合不同循環次數進行五株菌株 ( Escherichia coli、Bacillus cereus、Salmonella choleraesuis、Staphylococcus aureus、Vibrio parahaemolyticus ) 個別殺菌效果比較。並以微泡沫型臭氧水浸泡蘋果切塊以及冷凍干貝,探討經微泡沫型臭氧水處理後貯存於7℃ 冷藏環境下,各項品質指標變化。
結果顯示,若以D值表示病原菌對微泡沫型臭氧水的抵抗能力,在0.6 ppm濃度下, B. cereus ( D = 4.30 min)最大,依序則是: S. aureus (2.68)、S. choleraesuis (2.31)、V. parahaemolyticus (1.49),E coli (0.81),在1.0 ppm濃度時,最具抗性與最敏感的菌株仍是B. cereus (3.33)與E. coli (0.72)。蘋果切片處理後,貯藏可以從控制組的15天延長至24天或以上,同時在高濃度時,可明顯抑制酵素性褐變發生。生鮮干貝經過微泡沫型臭氧水浸泡後,在7℃可延長約2天的保存期限,期間VBN與顏色皆沒有顯著變化。

綜合上述結果顯示微泡沫型臭氧水具有良好殺菌效果,並且能有效延長新鮮蘋果切片與冷凍干貝架售期,且能顯著降低水產品中的VBN含量,為一具有潛力的食品殺菌方法。建議可應用於高風險食品業,使食品原物料與成品更加安全,達到把關國人食品安全之目的。

Recently, agricultural and food industry applications of ozone encapsulated microbubble has drawn a great attention due to it is more effective by achieving higher ozone concentration than traditional ozone devices. In this study, 5 pathogens, namely, Escherichia coli、Bacillus cereus、Salmonella choleraesuis、Staphylococcus aureus、Vibrio parahaemolyticus, were tested against ozonated microbubble, at 0.6 and 1.0 ppm ozone concentration. Further, shelf life extension and quality improvement of sliced apple and raw scallop were tested by ozonated microbubble treatments.
As in sterilization process, using D-value to represent bacterial resistance to ozonated microbubble, at 0.6 ppm ozone concentration, B. cereus ( D = 4.30 min) showed the highest resistance, followed by S. aureus (2.68), S. choleraesuis (2.31), V. parahaemolyticus (1.49), and E coli (0.81). At 1.0 ppm, the resistance ranking remained the same with slightly decreased D-value for B. cereus (3.33) and E. coli (0.72), respectively. For slice apply, shelf life was extended from 15 days for control, to 24 days or longer with ozone treatment. Moreover, significant inhibition of browning discoloration was also observed. Similarly, shelf life was only extended 2 days for raw scallop after treated together with no significant changes in color.

The above results show the ozonated microbubble have a good antimicrobial effect, extending shelf life of apple slice and frozen scallops and reduce VBN content in scallops . Ozonated microbubble is a potential method , can be applied to high-risk food industry to make raw materials and finished products more safe, to achieve the purposes for people’s healthy.

Key word: ozone, microbubble, sanitizing effect, shelf life

目次
摘要 2
目次 II
圖次 V
表次 VI
壹、 前言 1
貳、 文獻回顧 2
1. 臭氧的物理與化學性質 2
2. 臭氧與其他消毒劑比較 5
3. 臭氧處理的安全性 6
4. 臭氧的殺菌機制與效果 7
(一) 細菌、黴菌及酵母菌 7
(二) 病毒 8
(三) 原生動物 8
5. 影響臭氧殺菌的因素 8
(一) 臭氧濃度 8
(二) 酸鹼值 9
(三) 溫度 9
(四) 溶劑的有機成份 10
(五) 氯化鈉濃度 10
6. 臭氧微泡沫 10
(一) 微泡沫原理與特性 10
(二) 臭氧微泡沫使用效率與穿透性探討 11
(三) 臭氧泡沫於降低食品病原菌的應用 12
7. 常見食品病原菌危害 13
參、 研究目的 14
肆、 實驗設計和材料與方法 15
一、 實驗材料 15
二、 分析項目及實驗方法 16
伍、 結果與討論 25
陸、 結論與建議 49
柒、 參考文獻 50


食品藥物管理署 (2013a)。冷凍食品衛生標準。
食品藥物管理署 (2013b)。食品微生物之檢驗方法-生菌數之檢驗。
食品藥物管理署 (2015)。食品中毒案件病因物質分類統計。
巫健次 (1988)。水中有機物對O3及ClO2消毒致病微生物的影響研究。國立台灣大學環境工程學研究所碩士論文。
李雅志 (2001)。臭氧及溶液處理對輕度加工蘋果楔形切塊品質改善之研究。國立台灣大學園藝學研究所碩士論文。
林致苑 (2000)。不同臭氧濃度及冷卻時間對生鮮雞肉保存性之影響。東海大學畜產學研究所碩士論文。
唐高永,張蕙蘭 (1989)。臭氧應用於廢水生物前處理之可行性研究。第十四屆廢水處理技術研討會論文。
張炳文 (1997)。臭氧冰塊製作及其抑菌保鮮效果之探討。國立臺灣海洋大學水產食品科學系研究所碩士論文。
郭鴻均 (1997)。低水活性食品之指標。海大漁推,21-35。
陳錫秋、張瑞章、賴幸宜、劉天斌 (1988)。臭氧應用於水質處理之效果。環境保護與生態保育研討會論文專集。181-195。
陳中 (1995)。台灣農家要覽-果樹篇。豐年社。
須山三千三,鴻巢章三 (1987)。水產食品學。恆星社厚升閣,東京。
黃世浩 (1990)。臭氧的殺菌作用及其對冷凍草蝦加工上應用的研究。國立海洋大學水產食品研究所碩士論文。
蔡秋杏,吳燕燕,李來好,楊賢慶,趙永強,王悅齊 (2014)。黃花魚醃制加工過程的脂肪氧化分析。食品安全質量檢測學報。4019-4084。
環保署 (2010) 。飲用水水質處理藥劑一覽表。
Abadias, M., Usall, J., Alegre, I., Torres, R., & Viñas, I. (2009). Fate of Escherichia coli in apple and reduction of its growth using the postharvest biocontrol agent Candida sake CPA‐1. Journal of the Science of Food and Agriculture, 89(9), 1526-1533.
Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175-1180.
AOAC International. (2005). Official methods of analysis of AOAC International. AOAC International.
Baird-Parker, A. C., & Holbrook, R. (1971). The inhibition and destruction of cocci. Inhibition and Destruction of The Microbial Cell, 369-397.



Baixas-Nogueras, S., Bover-Cid, S., Veciana-Nogués, M. T., & Vidal-Carou, M. C. (2009). Effect of gutting on microbial loads, sensory properties, and volatile and biogenic amine contents of European hake (Merluccius merluccius var. Mediterraneus) stored in ice. Journal of Food Protection, 72(8), 1671-1676.
Berger, N.C., Sodha, V.S., Shaw, K.R., Griffin, M.P., Pink, D., Hand, P., & Frankel, G., (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environment M icrobiology, 12, 2385-2397.
Budavari, S., O’Neil, M. J., Smith, A., & Heckelman, P. E. (1989). The Merck Index (2330-2331). Rahway, NJ: Merck.
Carrera, J., Baeza, J. A., Vicent, T., & Lafuente, J. (2003). Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 37(17), 4211-4221.
Chen, H. C., Huang, S. H., Moody, M. W., & Jiang, S. T. (1992). Bacteriocidal and mutagenic effects of ozone on shrimp (Penaeus monodon) meat. Journal of Food Science, 57(4), 923-927.
Chen, R., Ma, F., Li, P.-W., Zhang, W., Ding, X.-X., & Zhang, Q. (2014). Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chemistry, 146, 284–288.
Chu, L. B., Xing, X. H., Yu, A. F., Zhou, Y. N., Sun, X. L., & Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68(10), 1854-1860.
Chu, L. B., Xing, X. H., Yu, A. F., Sun, X. L., & Jurcik, B. (2008). Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Safety and Environmental Protection, 86(5), 389-393.
Cobb, B. F., Alaniz, I., & Thompson, C. A. (1973). Biochemical and microbial studies on shrimp: volatile nitrogen and amino nitrogen analysis. Journal of Food Science, 38(3), 431-436.
Criegee, R. (1957). The course of ozonization of unsaturated compounds. Record of Chemical Progress, 18(2), 111-120.
Crisp, L. M., & Bland, C. E. (1990). Potential use of ozone to disinfect sea water of fungi causing diseases of cultured marine crustacea. Journal of Invertebrate Pathology, 55(3), 380-386.

Dhaouadi, A., Monser, L., Sadok, S., & Adhoum, N. (2007). Validation of a flow-injection-gas diffusion method for total volatile basic nitrogen determination in seafood products. Food Chemistry, 103(3), 1049-1053.
FDA. (1995). Beverages: Bottled Water, Final rule. Food and Drug Administration., Federal Register. 60, 57075-57130.
Feng, Z., Xi, J., Huang, J. J., & Hu, H. Y. (2013). Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology, 114, 126-133.


Fetner, R. H., & Ingols, R. S. (1956). A comparison of the bactericidal activity of ozone and chlorine against Escherichia coli at 1 degree. Journal of General Microbiology, 15(2), 381-385.
Finch, G. R., & Smith, D. W. (1989). Ozone dose-response of Escherichia coli in activated sludge effluent. Water Research, 23(8), 1017-1025.
Gould, J. P., & Weber Jr, W. J. (1976). Oxidation of phenols by ozone. Journal (Water Pollution Control Federation), 47-60.
Graham, D. M. (1997). Use of ozone for food processing. Food Technology, 51(6), 72-75.
Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT-Food Science and Technology, 37(4), 453-460.
Guzel-Seydim, Z., Bever, P. I., & Greene, A. K. (2004). Efficacy of ozone to reduce bacterial populations in the presence of food components. Food Microbiology, 21(4), 475-479.
He, C., Gu, Q., Huang, M., Xing, J., & Chen, J. (2013). Biomolecule delivery into canola protoplasts by centrifuging cells with microbubbles. FEBS Letters, 587(3), 285-290.
Hinze, H., Prakash, D., & Holzer, H. (1987). Effect of ozone on ATP, cytosolic enzymes and permeability of Saccharomyces cerevisiae. Archives of Microbiology, 147(2), 105-108.
Hoffman, R. K. (1971). Toxic gases. Inhibition and Destruction of the Microbial Cell, 225-258.
Hoigné, J., & Bader, H. (1977). Ozonation of Water: Selectivity and Rate of Oxidation of Solutes. 3rd Intl. Ozone Symphony.(IOA), Paris, France.
Hoigné, J., & Bader, H. (1994). Characterization of water quality criteria for ozonation processes. Part II: Lifetime of Added Ozone.
Ikeura, H., Kobayashi, F., & Tamaki, M. (2011). Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering, 103(3), 345-349.
Ikeura, H., Hamasaki, S., & Tamaki, M. (2013). Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves. Food Chemistry, 138(1), 366-371.
Inatsu, Y., Kitagawa, T., Nakamura, N., Kawasaki, S., Nei, D., Bari, M. L., & Kawamoto, S. (2011). Effectiveness of stable ozone microbubble water on reducing bacteria on the surface of selected leafy vegetables. Food Science and Technology Research, 17(6), 479-485.
International Ozone Association. (1987). Iodometric method for the determination of ozone in a process gas. Quality Assurance Committee, Revised Standardized Procedure, 1, 96.
Ishizaki, K., Sawadaishi, K., Miura, K., & Shinriki, N. (1987). Effect of ozone on plasmid DNA of Escherichia coli in situ. Water Research, 21(7), 823-827.
Katzenelson, E., Kletter, B., & Shuval, H. I. (1974). Inactivation kinetics of viruses and bacteria in water by use of ozone. Journal (American Water Works Association), 725-729.
Katz, J. (1980). Ozone and Chlorine Dioxide Technology for Disinfection of Drinking Water.
Khuntia, S., Majumder, S. K., & Ghosh, P. (2012). Removal of ammonia from water by ozone microbubbles. Industrial & Engineering Chemistry Research, 52(1), 318-326.
Kim, C. K., Gentile, D. M., & Sproul, O. J. (1980). Mechanism of ozone inactivation of bacteriophage f2. Applied and Environmental Microbiology, 39(1), 210-218.
Kim, T. J., Silva, J. L., Chamul, R. S., & Chen, T. C. (2000). Influence of ozone, hydrogen peroxide, or salt on microbial profile, TBARS and color of channel catfish fillets. Journal of Food Science, 65(7), 1210-1213.
Korich, D. G., Mead, J. R., Madore, M. S., Sinclair, N. A., & Sterling, C. R. (1990). Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Applied and Environmental Microbiology, 56(5), 1423-1428.
Krause, C. R., & Weidensaul, T. C. (1978). Effects of ozone on the sporulation, germination and pathogenicity of Botrytis cinerea. Phytopathology, 68, 195-198.
Krehbiel, J. D., Schideman, L. C., King, D. A., & Freund, J. B. (2014). Algal cell disruption using microbubbles to localize ultrasonic energy. Bioresource Technology, 173, 448-451.
Kuscu, A., & Pazir, F., (2004). Ozone applications in food industry. Gida 29,123-129.
Lee, A.K., Lewis, D.M., Ashman, P.J., (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy, 46, 89-101.
Leiguarda, R. H., Peso, O. A., & ZR, D. P. A. (1949). The Bactericidal Action of Ozone. Revista de Obras Sanitarias de la Nacion, 13(132), 33-9.
Lu, F., Liu, D., Ye, X., Wei, Y., & Liu, F. (2009). Alginate–calcium coating incorporating nisin and EDTA maintains the quality of fresh northern snakehead (Channa argus) fillets stored at 4 degree. Journal of the Science of Food and Agriculture, 89(5), 848-854.
Manousaridis, G., Nerantzaki, A., Paleologos, E. K., Tsiotsias, A., Savvaidis, I. N., & Kontominas, M. G. (2005). Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiology, 22(1), 1-9.
Mayer, A. M., & Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18(2), 193-215.
Mezule, L., Tsyfansky, S., Yakushevich, V., & Juhna, T. (2009). A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of Escherichia coli. Desalination, 248(1), 152-159.
Patil, S., Cullen, P.J., Kelly, B., Frias, J.M., & Bourke, P., (2009). Extrinsic criticalcontrol parameters for ozone inactivation of Escherichia coli using a bubble column. Journal of Applied Microbiology, 107, 830-837.
Restaino, L., Frampton, E. W., Hemphill, J. B., & Palnikar, P. (1995). Efficacy of ozonated water against various food-related microorganisms. Applied and Environmental Microbiology, 61(9), 3471-3475.
Rickloff, J. R. (1987). An evaluation of the sporicidal activity of ozone. Applied and Environmental Microbiology, 53(4), 683-686.
Scott, D. M., & Lesher, E. C. (1963). Effect of ozone on survival and permeability of Escherichia coli. Journal of Bacteriology, 85(3), 567-576.
Shinriki, N., Ishizaki, K., Yoshizaki, T., Miura, K., & Ueda, T. (1988). Mechanism of inactivation of tobacco mosaic virus with ozone. Water Research, 22(7), 933-938.
Sirsi, S. R., & Borden, M. A. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 1(1-2), 3-17.
Sobsey, M. D. (1989). Inactivation of tobacoo mosaic virus with ozone. Water Research, 22(7), 933-938.
Stride, E., & Saffari, N. (2003). Microbubble ultrasound contrast agents: a review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 217(6), 429-447.
Sumikura, M., Hidaka, M., Murakami, H., Nobutomo, Y., & Murakami, T., (2007). Ozone micro-bubble disinfection method for waste water reuse system. Water Science & Technology, 56 (5), 53-61.
Takahashi, M. (2005). ζ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. The Journal of Physical Chemistry B, 109(46), 21858-21864.
Takahashi, M., Chiba, K., & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B, 111(6), 1343-1347.
Takahashi, M. (2009). Base and technological application of micro-bubble and nano-bubble. Mater Integrated, 22, 2-19.
Ulu, H. (2004). Evaluation of three 2-thiobarbituric acid methods for the measurement of lipid oxidation in various meats and meat products. Meat Science, 67(4), 683-687.
Vrochinskii, K. K. (1963). Experimental data on water decontamination with ozone. Hygiene Sanitation, 28(3) , 3-9.
Vyncke, W. (1970). Direct determination of the thiobarbituric acid value in
trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette,
Seifen, Anstrichmittel, 72(12), 1084-1087.
Walter, R. H., & Sherman, R. M. (1976). Duration of ozone in water in the upper solubility range. Journal of Food Science, 41(5), 993-995.
Whittle, K., Hardy, R., & Hobbs, G. (1990). Chilled fish and fishery products. Chilled Foods. The State of the Art, 87-116.
Wickramanayake, G. B., Rubin, A. J., & Sproul, O. J. (1984). Inactivation of Giardia lamblia cysts with ozone. Applied and Environmental Microbiology, 48(3), 671-672.
Xu L. (1999). Use of ozone to improve the safety of fresh fruits and vegetables. Food Technology, 53(10), 58-61, 3.

Yang, P. P. W., & Chen, T. C. (1979). Stability of ozone and its germicidal properties on poultry meat microorganisms in liquid phase. Journal of Food Science, 44(2), 501-504.
Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, S & Wang, J. (2015). Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials, 287, 412-420.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊