跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林軒如
研究生(外文):Lin, hsuan-ju
論文名稱:解譯 ABC 轉運蛋白 VcaM 對霍亂弧菌之藥物抗性
論文名稱(外文):Decipher the role in drug resistance of the ABC transporter VcaM in Vibrio cholerae
指導教授:林泓廷
指導教授(外文):Lin, Hong-Ting
口試委員:林泓廷許邦弘陳建中
口試委員(外文):Lin, Hong-TingHsu, Pang-HungChen, Chien-Chung
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:霍亂弧菌ABC轉運蛋白TolC依賴型VcaM
外文關鍵詞:Vibrio choleraeABC transporter proteinTolC- dependentVcaM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
霍亂是由霍亂弧菌所造成的傳染疾病,常經由糞便或汙染的水源傳染,病患會有急性且嚴重的脫水現象,主要流行在亞洲及非洲,目前主要針對霍亂主要透過抗生素進行治療,然而隨著具有抗藥性的菌株出現,使用抗生素進行治療已越來越困難。先前研究發現霍亂弧菌中有一 ABC 轉運蛋白 VcaM,其被證實可轉運多種抗生素,而本研究指出 VcaM 亦具有轉運巨環類藥物的能力,且其轉運的方式不須透過次級轉運蛋白的協助。將 VcaM 表現於 E. coli Kam3 菌株中發現可使細胞增加巨環類藥物的抗性,erythromycin、clarithromycin、azithromycin、spiramycin 分別提升 8 倍、4 倍、4 倍 和 16 倍,若將 VcaM 表現於 E. coli TG1 (ΔtolC) 中,僅能提升 2 倍、0.5 倍、1 倍 和 0.125 倍。而在 H33342 累積試驗中,在 Kam3 菌株表現 VcaM 可大幅提升細胞轉運 H33342 的能力,在 TG1 菌株中則無法進行 H33342 的轉運,顯示 VcaM 為 TolC 依賴型的轉運蛋白,而在累積試驗中添加次級轉運蛋白抑制劑 PAβN 發現對於 VcaM 的轉運能力並無顯著影響,故推測 VcaM 轉運基質的方式應為透過膜融合蛋白和 TolC 之間產生連接,而非透過次級轉運蛋白將基質排出細胞。
Cholera is an infectious disease caused by Vibrio cholerae, mainly via infected water and fecal, causing acute and severe dehydration to the patients, mainly in Asia and Africa. At present, the main treatment for cholera through antibiotics, but it has become increasingly difficult to deal with the multidrug resistance strains. Previous studies have revealed that chromosomally encoded ABC transporter protein VcaM in Vibrio cholerae could confer resistance to various antibiotics. In this study, we indicated that E. coli overexpressing VcaM was able to confer resistance against macrolides in the absence of secondary active transport proteins. Drug sensitive E. coli strain Kam3 overexpressing VcaM could increase the resistance to macrocyclic drugs by 4 to 16 folds, but the resistance was abolished in a TolC-deletion (an outer membrane protein) E . coli strain TG1, indicating the resistance is TolC dependent. A similar result was observed in the accumulation test, where the reduction of H33342 accumulation in the cells were observed in Kam3, but not in TG1, overexpressing VcaM. Moreover, the addition of PAβN, a general secondary active transporter inhibitor, to Kam3 overexpressing VcaM did not cause any significant effect on drug resistance and dye accumulation. Thus, we proposed that VcaM confers a TolC-depedent drug resistance against macrolides in the absence of secondary active transporters.
摘要 II
Abstract III
目錄 IV
表、圖目錄 IX
縮寫表 X
壹、前言 1
貳、文獻回顧 3
2.1. 認識抗生素 & 抗生素抗藥性 3
2.1.1. 抗生素的發現 3
2.1.2. 抗生素的種類及作用機制 4
2.1.3. 抗生素抗藥性 5
2.1.4. 多重抗藥性 6
2.1.5. 細菌抗藥性機制 7
2.2. 多重藥物轉運蛋白 9
2.2.1. 外排轉運蛋白 9
2.2.2. 轉運蛋白分類 9
2.2.3. ABC 主動轉運幫浦 (ATP-binding cassette transporters) 10
2.2.4. VcaM 12
2.3.1. 霍亂 13
2.3.2. 霍亂弧菌 14
2.3.3. 霍亂毒素 16
2.3.4. 霍亂的臨床症狀&治療方式 16
2.4. 基因敲除 (knock-out) 17
2.4.1. 同源重組 17
2.4.2. 使用環狀質體進行基因敲除 18
2.4.3. 基因剔除的意義 19
參、實驗設計 21
肆、實驗材料與方法 23
4.1. 實驗材料 23
4.1.1. 載體與菌株 23
4.1.1.1. VcaM 來源 23
4.1.1.2. 菌株與載體 23
4.1.2. Primers 24
4.1.3. 培養基 25
4.1.4. 抗生素 25
4.1.5. 化學藥品 26
4.1.6. 市售套組 26
4.1.7. 酵素與抗體 26
4.1.8. 標準品 28
4.1.9. 染劑 28
4.1.10. 實驗儀器與耗材 28
4.1.11. 管柱 29
4.1.12. 反應緩衝液 29
4.1.12.1. PCR reaction buffer 29
4.1.12.2. 6X DNA loading buffer 30
4.1.12.3. 50X TAE buffer 30
4.1.12.4. Restriction enzyme reaction buffer 30
4.1.12.5. Ligase reaction buffer 31
4.1.12.6. TFB1 buffer 31
4.1.12.7. TFB2 buffer 31
4.1.12.9. A buffer 32
4.1.12.10. B buffer 32
4.1.12.11. Running gel (8%) 32
4.1.12.12. Stacking (4%) 33
4.1.12.13. 10X MOPS running buffer 33
4.1.12.14. Coomassie Brilliant Blue G-250 stain solution 33
4.1.12.15. Transfer buffer 33
4.1.12.16. Wash buffer 34
4.1.12.17. Phosphate stock 34
4.1.12.18. Blocking buffer 34
4.1.12.19. PBS buffer 34
4.2. 實驗方法 36
4.2.1. 建構基因敲除載體 36
4.2.1.1. T4 多聚核苷酸激酶反應 36
4.2.1.2. 聚合酶鏈鎖反應 36
4.2.1.3. DNA 電泳與純化 37
4.2.1.4. TA clone 37
4.2.1.5. 限制酶剪切與 DNA 接合作用 37
4.2.1.6. 重組質體的轉型作用 39
4.2.1.7. 基因敲除菌株製備 40
4.2.2. 蛋白質表現與純化 40
4.2.2.1. 蛋白質表現 40
4.2.2.2. 蛋白質純化 41
4.2.3. 蛋白質特性分析 41
4.2.3.1. 蛋白質電泳 41
4.2.3.2. 西方點墨法 (Western blot) 42
4.2.3.3. VcaM 巨環內脂類藥物轉運測試 43
4.2.3.4. 藥物累積測試 43
伍、結果與討論 45
5.1. VcaM 於大腸桿菌中之藥物抗性測試 45
5.1.1. 在大腸桿菌 Kam3 中表現 VcaM 可提高 E. coli 對於巨環類藥物的抗性 45
5.1.2. 在大腸桿菌 Kam3 中表現 VcaM 可提高 E. coli 轉運 H33342 的能力 46
5.1.3. 使用 ATPase 抑制劑可降低 VcaM 轉運 H33342 的能力 46
5.2. VcaM 在大腸桿菌中的外排方式 48
5.2.1. 在大腸桿菌 TG1 中表現 VcaM 並無法提高 E. coli 對於巨環類藥物的抗性 48
5.2.2. 在大腸桿菌 TG1 中表現 VcaM 無法提升轉運 H33342 的能力 48
5.2.3. 添加次級轉運蛋白抑制劑 VcaM 無法提升轉運 H33342 的能力 49
5.3. 基因敲除載體建構 51
陸、結論 52
柒、參考文獻 53

李建輝,2012,霍亂弧菌多重藥物 ABC 轉運蛋白 VcaM 特性探討,國立臺灣海洋大學 食品科學系碩士學位論文,基隆。
李冠德,2013,霍亂弧菌多重藥物 ABC 轉運蛋白 VcaM 聚合型態與其作用基質探討,國立臺灣海洋大學 食品科學系碩士學位論文,基隆。
沈佑錡,2015,三方組成轉運蛋白 VarABCDEF 賦予霍亂弧菌巨還內脂類藥物抗性之探討,國立臺灣海洋大學 食品科學系碩士學位論文,基隆。
林秋香、王秀帆、周玉民、顏哲傑,我國民眾感染霍亂弧菌之流行病學探討,2014; 11 (31) :266-74.
林宸平,2014,霍亂弧菌巨環內脂類藥物 ABC 轉運蛋白 VarDEF 特性探討,國立臺灣海洋大學 食品科學系碩士學位論文,基隆。
秦煒強,2014,霍亂弧菌 VcaM 與大腸桿菌 TolC 交互作用賦予巨環類藥物抗性及 VcaM 的 C310 胺基酸參與藥物轉運,國立臺灣海洋大學 食品科學系碩士學位論文,基隆。
許世元、郭莉莉、許美滿、陳建成、史守志、王躬仁、洪其璧,台灣首例霍亂弧菌 O139 之檢出報告 疫情報導,1997; 11 (13) :341-8.
Aittoniemi, J., de Wet, H., Ashcroft, F.M., Sansom, M.S. 2010. Asymmetric switching in a homodimeric ABC transporter: a simulation study. PLoS Comput Biol, 6(4), e1000762.
Baum, E.Z., Crespo-Carbone, S.M., Morrow, B.J., Davies, T.A., Foleno, B.D., He, W., Queenan, A.M., Bush, K. 2009. Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 53(7), 2785-90.
Bennett, P.M. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol, 153 Suppl 1, S347-57.
Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O., Piddock, L.J. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 13(1), 42-51.
Bokma, E., Koronakis, E., Lobedanz, S., Hughes, C., Koronakis, V. 2006. Directed evolution of a bacterial efflux pump: adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase. FEBS Lett, 580(22), 5339-43.
Boncoeur, E., Durmort, C., Bernay, B., Ebel, C., Di Guilmi, A.M., Croize, J., Vernet, T., Jault, J.M. 2012. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry, 51(39), 7755-65.
Borges-Walmsley, M.I., McKeegan, K.S., Walmsley, A.R. 2003. Structure and function of efflux pumps that confer resistance to drugs. Biochem J, 376(Pt 2), 313-38.
Buckley, P.E., Valdes, J.J., O'Connell, K.P. 2007. Construction and Analysis of a MutL Knockout Strain of Vibrio cholerae. Edgewood Chemical Biological Center, 563.
Coldham, N.G., Webber, M., Woodward, M.J., Piddock, L.J. 2010. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother, 65(8), 1655-63.
Connell, S.R., Tracz, D.M., Nierhaus, K.H., Taylor, D.E. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother, 47(12), 3675-81.
Cosa, G., Focsaneanu, K.S., McLean, J.R., McNamee, J.P., Scaiano, J.C. 2001. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol, 73(6), 585-99.
Dalmas, O., Do Cao, M.A., Lugo, M.R., Sharom, F.J., Di Pietro, A., Jault, J.M. 2005. Time-resolved fluorescence resonance energy transfer shows that the bacterial multidrug ABC half-transporter BmrA functions as a homodimer. Biochemistry, 44(11), 4312-21.
Delmar, J.A., Su, C.C., Yu, E.W. 2014. Bacterial multidrug efflux transporters. Annu Rev Biophys, 43, 93-117.
Drlica, K., Zhao, X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev, 61(3), 377-92.
Feng, K., Sun, H., Bradley, M.A., Dupler, E.J., Giannobile, W.V., Ma, P.X. 2010. Novel antibacterial nanofibrous PLLA scaffolds. J Control Release, 146(3), 363-9.
Fukuda, Y., Schuetz, J.D. 2012. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol, 83(8), 1073-83.
Gill, D.M. 1976. Multiple roles of erythrocyte supernatant in the activation of adenylate cyclase by Vibrio cholerae toxin in vitro. J Infect Dis, 133 Suppl, 55-63.
Gonzalez-Zorn, B., Escudero, J.A. 2012. Ecology of antimicrobial resistance: humans, animals, food and environment. Int Microbiol, 15(3), 101-9.
Harris, J.B., LaRocque, R.C., Qadri, F., Ryan, E.T., Calderwood, S.B. 2012. Cholera. Lancet, 379(9835), 2466-76.
Hayes, J.D., Wolf, C.R. 1990. Molecular mechanisms of drug resistance. Biochem J, 272(2), 281-95.
Heermann, K.H., Gultekin, H., Gerlich, W.H. 1988. Protein blotting: techniques and application in virus hepatitis research. Ric Clin Lab, 18(2-3), 193-221.
Huda, N., Lee, E.W., Chen, J., Morita, Y., Kuroda, T., Mizushima, T., Tsuchiya, T. 2003. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob Agents Chemother, 47(8), 2413-7.
Hultgren, S.J., Abraham, S., Caparon, M., Falk, P., St Geme, J.W., 3rd, Normark, S. 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell, 73(5), 887-901.
Ishikawa, J., Chiba, K., Kurita, H., Satoh, H. 2006. Contribution of rpoB2 RNA polymerase beta subunit gene to rifampin resistance in Nocardia species. Antimicrob Agents Chemother, 50(4), 1342-6.
Jacoby, G.A., Munoz-Price, L.S. 2005. The new beta-lactamases. N Engl J Med, 352(4), 380-91.
Janoir, C., Zeller, V., Kitzis, M.D., Moreau, N.J., Gutmann, L. 1996. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother, 40(12), 2760-4.
Jertborn, M., Nordstrom, I., Kilander, A., Czerkinsky, C., Holmgren, J. 2001. Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect Immun, 69(6), 4125-8.
Kabir, I., Khan, W.A., Haider, R., Mitra, A.K., Alam, A.N. 1996. Erythromycin and trimethoprim-sulphamethoxazole in the treatment of cholera in children. J Diarrhoeal Dis Res, 14(4), 243-7.
Kerr, I.D. 2002. Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta, 1561(1), 47-64.
Kitaoka, M., Miyata, S.T., Unterweger, D., Pukatzki, S. 2011. Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol, 60(Pt 4), 397-407.
Kobayashi, N., Nishino, K., Yamaguchi, A. 2001. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol, 183(19), 5639-44.
Lai, C.C., Liu, W.L., Chiu, Y.H., Gau, S.J., Hsueh, P.R. 2012. Spontaneous bacterial empyema due to non-O1, non-O139 Vibrio cholerae in a cirrhotic patient with hepatocellular carcinoma. Diagn Microbiol Infect Dis, 73(1), 84-5.
Leach, K.L., Swaney, S.M., Colca, J.R., McDonald, W.G., Blinn, J.R., Thomasco, L.M., Gadwood, R.C., Shinabarger, D., Xiong, L., Mankin, A.S. 2007. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell, 26(3), 393-402.
Levine, M.M., Kaper, J.B., Herrington, D., Losonsky, G., Morris, J.G., Clements, M.L., Black, R.E., Tall, B., Hall, R. 1988. Volunteer Studies of Deletion Mutants of Vibrio Cholerae O1 Prepared by Recombinant Techniques. Infection and Immunity, 56(1), 161-167.
Lin, H.T., Bavro, V.N., Barrera, N.P., Frankish, H.M., Velamakanni, S., van Veen, H.W., Robinson, C.V., Borges-Walmsley, M.I., Walmsley, A.R. 2009. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J Biol Chem, 284(2), 1145-54.
Linton, K.J. 2007. Structure and function of ABC transporters. Physiology (Bethesda), 22, 122-30.
Linton, K.J., Higgins, C.F. 2007. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch, 453(5), 555-67.
Lomovskaya, O., Warren, M.S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H., Lee, V.J. 2001. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother, 45(1), 105-16.
Lomovskaya, O., Watkins, W. 2001. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol, 3(2), 225-36.
Lu, S., Zgurskaya, H.I. 2012. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter. Mol Microbiol, 86(5), 1132-43.
Lubelski, J., Konings, W.N., Driessen, A.J. 2007. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev, 71(3), 463-76.
Magnusson, M.R., Pegg, S.P. 1996. Vibrio cholerae non-O1 primary septicaemia following a large thermal burn. Burns, 22(1), 44-7.
Matsuo, T., Chen, J., Minato, Y., Ogawa, W., Mizushima, T., Kuroda, T., Tsuchiya, T. 2008. SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol, 190(2), 648-54.
Mehmood, S., Domene, C., Forest, E., Jault, J.M. 2012. Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A, 109(27), 10832-6.
Morita, Y., Kodama, K., Shiota, S., Mine, T., Kataoka, A., Mizushima, T., Tsuchiya, T. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother, 42(7), 1778-82.
Morris, J.G., Jr. 2003. Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis, 37(2), 272-80.
Moyer, L.S. 1936. A Suggested Standard Method for the Investigation of Electrophoresis. J Bacteriol, 31(5), 531-46.
Murata, S., Herman, P., Lakowicz, J.R. 2001. Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei. J Histochem Cytochem, 49(11), 1443-51.
Nagakubo, S., Nishino, K., Hirata, T., Yamaguchi, A. 2002. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol, 184(15), 4161-7.
Nishino, K., Yamada, J., Hirakawa, H., Hirata, T., Yamaguchi, A. 2003. Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to beta-lactams. Antimicrob Agents Chemother, 47(9), 3030-3.
Opperman, T.J., Kwasny, S.M., Kim, H.S., Nguyen, S.T., Houseweart, C., D'Souza, S., Walker, G.C., Peet, N.P., Nikaido, H., Bowlin, T.L. 2014. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother, 58(2), 722-33.
Page, M.G. 2008. Extended-spectrum beta-lactamases: structure and kinetic mechanism. Clin Microbiol Infect, 14 Suppl 1, 63-74.
Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M., van Vliet, A.H., Whitehead, S., Barrell, B.G. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403(6770), 665-8.
Procko, E., O'Mara, M.L., Bennett, W.F., Tieleman, D.P., Gaudet, R. 2009. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J, 23(5), 1287-302.
Ravaud, S., Do Cao, M.A., Jidenko, M., Ebel, C., Le Maire, M., Jault, J.M., Di Pietro, A., Haser, R., Aghajari, N. 2006. The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. Biochem J, 395(2), 345-53.
Reynolds, P.E. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis, 8(11), 943-50.
Richmond, G.E., Chua, K.L., Piddock, L.J. 2013. Efflux in Acinetobacter baumannii can be determined by measuring accumulation of H33342 (bis-benzamide). J Antimicrob Chemother, 68(7), 1594-600.
Russell, A.D. 2002. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol, 92 Suppl, 121S-35S.
Ryan, B., Ho, H.T., Wu, P., Frosco, M.B., Dougherty, T., Barrett, J.F. 2000. 4Oth Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Expert Opin Investig Drugs, 9(12), 29450-72.
Sack, D.A., Sack, R.B., Nair, G.B., Siddique, A.K. 2004. Cholera. Lancet, 363(9404), 223-33.
Saha, D., Karim, M.M., Khan, W.A., Ahmed, S., Salam, M.A., Bennish, M.L. 2006. Single-dose azithromycin for the treatment of cholera in adults. N Engl J Med, 354(23), 2452-62.
Schild, S., Nelson, E.J., Camilli, A. 2008. Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun, 76(10), 4554-63.
Schweizer, H.P. 2012. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Expert Opin Drug Discov, 7(7), 633-42.
Shakil, S., Khan, R., Zarrilli, R., Khan, A.U. 2008. Aminoglycosides versus bacteria--a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci, 15(1), 5-14.
Siddique, A.K., Cash, R. 2014. Cholera outbreaks in the classical biotype era. Curr Top Microbiol Immunol, 379, 1-16.
Skorupski, K., Taylor, R.K. 1996. Positive selection vectors for allelic exchange. Gene, 169(1), 47-52.
Steinfels, E., Orelle, C., Fantino, J.R., Dalmas, O., Rigaud, J.L., Denizot, F., Di Pietro, A., Jault, J.M. 2004. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry, 43(23), 7491-502.
Steinmetz, M., Le Coq, D., Djemia, H.B., Gay, P. 1983. [Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg]. Mol Gen Genet, 191(1), 138-44.
Taylor, D.L., Bina, X.R., Bina, J.E. 2012. Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus. PLoS One, 7(5), e38208.
Tenson, T., Lovmar, M., Ehrenberg, M. 2003. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol, 330(5), 1005-14.
Thomas, M., Cherian, T., Raghupathy, P. 1996. Non-O:1 Vibrio cholerae bacteremia and peritonitis in a patient with nephrotic syndrome. Pediatr Infect Dis J, 15(3), 276-7.
Tsai, Y.H., Hsu, R.W., Huang, K.C., Chen, C.H., Cheng, C.C., Peng, K.T., Huang, T.J. 2004. Systemic Vibrio infection presenting as necrotizing fasciitis and sepsis. A series of thirteen cases. J Bone Joint Surg Am, 86-A(11), 2497-502.
Van Bambeke, F., Balzi, E., Tulkens, P.M. 2000. Antibiotic efflux pumps. Biochem Pharmacol, 60(4), 457-70.
Vekshin, N. 2011. Binding of Hoechst with nucleic acids using fluorescence spectroscopy. Journal of Biophysical Chemistry, 5.
Waldor, M.k., pe, H.t., Mekalanos, J.j. 1996. A New Type of Conjugative Transposon Encodes Resistance to Sulfamethoxazole, Trimethoprim, and Streptomycin in Vibrio cholerae O139. JOURNAL OF BACTERIOLOGY.
Wang, F., Butler, T., Rabbani, G.H., Jones, P.K. 1986. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med, 315(25), 1591-5.
WHO. 2010. Weekly epidemiological record.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top