跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾莉莎
研究生(外文):Elisa Blanda
論文名稱:半密集式橈足類生產系統對於水產養殖海洋魚苗之對比分析
論文名稱(外文):Comparative analyses of semi-extensive copepod production systems for marine larval fish in aquaculture
指導教授:黃將修Benni Winding Hansen
指導教授(外文):Hwang, Jiang-ShiouBenni Winding Hansen
口試委員:Terje van der Meer黃將修Peter Tiselius KriSøren Laurentius NielsenBenni Winding Hansen
口試委員(外文):Terje van der MeerHwang, Jiang-ShiouPeter Tiselius KriSøren Laurentius NielsenBenni Winding Hansen
口試日期:2015-09-08
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:304
中文關鍵詞:橈足類生產系統海洋仔稚魚養殖臺灣丹麥
外文關鍵詞:copepod production systemsmarine larval fishaquacultureTaiwanDenmark
相關次數:
  • 被引用被引用:1
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
橈足類生物為海洋浮游動物組成中的主要生物,在遠洋生態系裡扮演食物鏈底層與高層之間能量傳遞的要角。於自然環境中,肉食性魚類的魚苗偏好以活體餌料為食,而橈足類為最常見的餌料生物之一。從養殖的眾多橈足類品種中提供優良之活體餌料生物給魚苗,主要的目的在於提昇魚苗的存活率以及品質。現實生活中,由於橈足類的適當體型以及高營養價值,使牠取代輪蟲與豐年蝦成為重要活體餌料的候選生物。在水產養殖業應用上,飼養當地原生橈足類為最佳首選,因為當地物種取得容易,也已適應當地環境及氣候條件,但就穩定供應的技術條件上,仍有待克服。為了建立必要的基礎知識,本研究試圖以丹麥及台灣兩地的半集約式橈足類養殖方式,來描述遠洋生態系食物網動態。在丹麥,橈足類被飼養來作為鰈魚魚苗的活餌,在台灣則用以餵養石斑魚苗。過去三年,這些地區主要養殖的橈足類之生態學、生物學、生理學及養殖技術已有了初步研究。
在丹麥,橈足類的豐度成為鰈魚魚苗維持高存活率的限制條件。通過對營養素的控制研究,實現了提高浮游植物生物量,從而促進了橈足類的健康,提昇了養殖密度,這將可大量供給於魚苗之養殖。雖然研究成功提高了橈足類的養殖密度,但是高營養鹽的添加使得浮游植物的優勢族群從矽藻轉變成渦鞭藻。營養素的添加導致 pH升高與渦鞭藻出現,降低魚苗存活率,也讓橈足類的優勢種類由 Acartia spp. 變 Centropages hamatus。除此之外,在養殖末期移除海水後發現大量 Acartia spp. 的休眠卵出現於繁殖槽之沉積物中。這些卵可以被收集、儲存並且在鰈魚魚苗開始攝食時孵化加以利用。當鰈魚魚苗開始攝食時,營養豐富的橈足類配合休眠卵的收集便能提供充足的活餌。此外,橈足類繁殖槽與魚類養殖槽隔離,可以避免魚苗因水質問題產生不必要的死亡。
在台灣,橈足類的養殖與牠們的生產力紀錄首次被描述。橈足類種群具有物種多樣性低以及種類組成單一(最主要的種類為Pseudodiaptomus annandalei)的特點。初步的研究中發現P. annandalei 為最佳的活餌候選品種,因為牠對於不同的養殖條件具有很強的適應力、成長快速並且富含脂肪酸。為期一年的研究表明,即便環境條件明顯改變的狀況下,橈足類的生產力與豐度仍能保持穩定。然而,相較於初步研究,有些橈足類其成長速率低、脂肪酸的組成成分不同,顯示出橈足類成長取決於水體中所存在之食物,例如浮游植物與作為肥料的魚肉。由於漁民收集橈足類成體與亞成體來當石斑魚苗的活餌,橈足類的無節幼生卻完全不被考慮拿來利用,因此養殖池中具有相當高的豐度。為了增加漁民的收入,亦考慮到漁民不能中斷捕撈的壓力,我們推估現有橈足類成體與亞成體的收成量可以翻倍;而且,橈足類的無節幼生也能收集加以販售,用來作為石斑之外魚苗的初期餵食活餌。
綜合兩地的比較研究,得以更深入了解餌料用橈足類的特性,並針對如何提升橈足類的飼育技術,為台灣與丹麥兩地的養殖業者提供有效建議。
Copepods, as the main component of the meso-zooplankton, play an important role in pelagic systems in linking the lower trophic levels to the highest ones. In natural environments, carnivorous fish larvae prefer to capture and consume live feed, and copepods represent one of their most common food items. To provide a superior live feed for fish larvae in aquaculture, species of copepods are used aiming to increase the survival and the quality of the fish. In fact, copepods are interesting candidates to replace rotifers and Artemia due to their adequate size and higher nutrient content. In the aquaculture industry, native copepod species are preferred due to their adaptation to the local climate and environmental conditions, but their availability in terms of biomass is still an issue to solve. To establish necessary fundamental knowledge, the intent of the study was to describe the pelagic food web dynamics in two semi-intensive copepod farms. In Denmark live copepods are cultivated to feed turbot larvae, while in Taiwan they are cultured for grouper larvae feeding. The ecology, biology, and physiology of the major copepods species as well as farming techniques were studied over the course of 3 years.
In Denmark copepod abundances in production tanks were defined to be insufficient to sustain high survival rates of turbot larvae. A manipulation study with the addition of nutrients was accomplished to boost phytoplankton biomass and cascade into better fitness of copepods which, increasing in density, will fulfill the needs of the fish larvae. The study was successful, and higher density of copepods was reached, however the high level of nutrients governed the phytoplankton community that changed from diatom dominated to dinoflagellates. High pH and the presence of nuisance dinoflagellates reduced the survival of fish larvae in nutrient amended treatment and caused a shift in copepod species, with Acartia spp. taking over Centropages hamatus. Furthermore, resting copepod eggs of mainly Acartia spp. were found in great amount in the sediment of the tanks after the removal of seawater at the end of the production cycle. Those eggs could be collected, stored and hatched at the exact time when the turbot larvae start feeding. The use of nutrient-enriched copepods and the collection of resting eggs would potentially solve the need of adequate prey field when turbot start first feeding. Moreover, copepod production tanks would be separated from fish tanks to avoid water quality issues causing unwanted mortality.
With regard to Taiwan, this study presents the first description and recording of copepod cultures and their productivity. The copepod community in Taiwan was characterized by low species diversity and revealed no differences in species composition, with Pseudodiaptomus annandalei as the main species. The first campaign revealed that P. annandalei is an optimal candidate for live feed considering its strong resistance to different culturing conditions, fast growth and high FA content. During a yearlong study, the productivity of copepods and abundances remained quite stable, even though environmental changes were observed. However, copepod growth was lower compared to the first campaign and differed in FA composition, indicating that growth was dependent on the food available in the water column, considering both the type of phytoplankton and fish meal used as fertilizers. It was perceived that farmers exclusively collected adult copepods and copepodites as live feed for grouper, whereas nauplii, found in great measure, were not considered. To increase the income of the farmers, taking into consideration the sustainable actual harvest pressure, we estimated that the copepods and copepodites harvest could be doubled; moreover, nauplii could also be collected and be sold to feed fish larvae other than grouper at first feed.

This comparative study leads to a better understanding of copepod farming for use as feed for fish larvae as well as it helps to draw recommendations on how to improve the copepod aquaculture industry in both Denmark and Taiwan.
Table of contents:

Acknowledgements
Abstracts
1. Introduction to aquaculture
2. Live feed in aquaculture
3. Copepods as live feed
4. History of research in “copepods and aquaculture”
5. Copepod cultures
5.1 Copepod culture systems
6. The Ph.D. project: assessment of two semi-intensive copepod systems
6.1. The Danish system
6.2. The Taiwanese system
6.3. Relevant copepod species
7. Aim of the study
8. Main findings
8.1 Comparison between the two semi-intensive copepod systems
9. Conclusions and future recommendations
10. References
10.1 References for chapter 4
11. Manuscripts

Abate, T.G., Nielsen, M., Nielsen, R, Drillet, G., Jepsen, P.M., Hansen, B.W. (2015a) Economic feasibility of copepod production on a commercial scale: result from a prototype production facility. Aquaculture 436, 72-79.
Abate, T.G., Nielsen, R., Nielsen, M., Jepsen, P.M. & Hansen, B.W. (2015b, in press) A cost-effectiveness analysis of live feeds in juvenile turbot Scophtalmus maximus (Linnaeus, 1758) farming: copepods versus Artemia. Aquaculture Nutrition.
Ajiboye, O.O., Yakubu, A.F., Adams, T.E., Olaji, E.D. & Nwogu, N.A. (2011) A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries 21, 225-246.
Beyrend-Dur, D., Kumar, R., Rao, T.R., Souissi, S., Cheng, S.-H., & Hwang, J.-S. (2011) Demographic parameters of adults of Pseudodiaptomus annandalei (Copepoda: Calanoida): Temperature–salinity and generation effects. Journal of Experimental Marine Biology and Ecology 404(1-2), 1–14.
Breteler, W.C.M.K. & Gonzalez, S.R. (1988) Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species. Hydrobiologia 167/168, 201-210.
Busch, K.E.T., Peruzzi, S., Tonning, F. & Falk-Petersen, I-B. (2011) Effect of prey type and size on the growth, survival and pigmentation of cod (gadus morhua L.) larvae. Aquaculture Nutrition 17, 595-603.
Buskey, E.J. (1994) Factors affecting feeding selectivity of visual predators on the copepod Acartia tonsa: locomotion, visibility and escape responses. Hydrobiologia 292/293, 447-453.
Buttino, I., Ianora, A., Buono, S., Vitiello, V., Malzone, M.G., Rico, C., Langellotti, A.L., Sansone, G., Gennari, L., Miralto, A., (2012) Experimental cultivation of the Mediterranean calanoid copepods Temora stylifera and Centropages typicus in a pilot recirculating system. Aquaculture Research. 43, 247–259.
Carotenuto, Y., Esposito, F., Pisano, F., Lauritano, C., Perna, M., Miralto, A., Ianora, A. (2012) Multi-generation cultivation of the copepod Calanus helgolandicus in a re-circulating system. Journal of Experimental Marine Biology and Ecology 418-419, 46–58.
Castro-Longoria, E., Williams, J.A. (1999) The production of subitaneous and diapause eggs: a reproductive strategy for Acartia bifilosa (Copepoda: Calanoida) in Southampton waters, U.K. Journal of Plankton Research 21, 65–84.
Chen, L.C. (1990) Aquaculture in Taiwan. Fishing News Books, Blackwell Scientific Publications, Oxford, UK.
Chen, Q., Sheng, J., Lin, Q., Gao, Y., & Lv, J. (2006) Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture 258(1-4), 575–582.
Conceição, L.E.C., Yúfera, M., Makridis, P., Morais, S., & Dinis, M.T. (2010) Live feeds for early stages of fish rearing. Aquaculture Research 41(5), 613–640.
Doi, M. & Singhagraiwan, S.T. (1993) Biology and culture of the red snapper Lutjanus argentimaculatus. The research project of fishery ressource development in the kingdom of Thailand the eastern marine fisheries development center. Rayong, Thailand.
Drillet, G., Jorgensen, N. O. G., Sorensen, T. F., Ramlov, H., & Hansen, B. W. (2006) Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research 37(8), 756–772.
Drillet, G., Goetze, E., Jepsen, P.M., Højgaard, J.K. & Hansen, B.W. (2008a) Strain-specific vital rates in four Acartia tonsa cultures, I: Strain origin, genetic differentiation and egg survivorship. Aquaculture 280, 109-116.
Drillet, G., Jepsen, P.M., Højgaard, J.K., Jørgensen, N.O.G., Hansen, B.W. (2008b) Strain-specific vital rates in four Acartia tonsa cultures II: life history traits and biochemical contents of eggs and adults. Aquaculture 279, 47–54.
Drillet, G., Frouël, S., Sichlau, M.H., Jepsen, P.M., Højgaard, J.K., Joarder, A.K. & Hansen, B.W. (2011) Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315(3-4), 155–166.
Engell-Sørensen, K., Støttrup, J. G., and Holmstrup, M. (2004) Rearing of flounder (Platichthys flesus) juveniles in semiextensive systems. Aquaculture 230(1-4), 475-491.
Eppley, R.W., Carlucci, A.F., Holmhans, O., Kiefer, D., Mccarthy, J.J., Venrick, E., and Williams, P.M. (1971). Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonium, or urea as nitrogen source. Limnology and Oceanography 16(5), 741.
©FAO 2005-2014. Aquaculture topics and activities. State of the world aquaculture. Text by Rohana Subasinghe. In FAO Fisheries and Aquaculture Department. Rome.
Fox, C.J.; Harrop, R. and Wimpenny, A. (1999) Feeding ecology of herring (Clupea harengus) larvae in the turbid Blackwater Estuary. Marine biology 134, 353-365.
Fukusho, K. (1980) Mass production of a copepod, Tigriopus japonicus in combination culture with a rotifer Brachionus plicatilis, fed omega-yeast as a food source. Bulletin of the Japanese Society of Scientific Fisheries 46, 625-629.
Golez, M.S.N., Takahashi, T., Ishimaru, T. & Ohno A. (2004) Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida) Plankton Biol. Ecol. 51(1): 15-25.
Hansen, B.W., Blanda, E., Drillet, G., Højgaard J.K., Mahjoub, M.S., Rayner, T.A. (2015, submitted) Outdoor rearing facilities of free spawning calanoid copepods can host a bank of resting eggs in the sediment. Aquaculture, short communication.
Hernandez Molejón, O.G. & Alvarez-Lajonchére, L. (2003) Culture experiments with Oithona oculata Farran, 1913 (Copepoda:Cyclopoida), and its advantages as food for marine fish larvae. Aquaculture 219, 471-483.
Jepsen, P.M., Jakobsen, H.H., Rayner, T.A., Blanda, E., Novac, A., Engel-Sørensen, K. & Hansen, B.W. (2015) A production season of turbot larvae Scophthalmus maximus (Linnaeus, 1758) reared on copepods in a Danish semi-intensive outdoor system. Aquaculture, submitted.
Lee, C.-H., Dahms, H.-U., Cheng, S.-H., Souissi, S., Schmitt, F.G., Kumar, R. & Hwang, J.-S. (2010) Predation of Pseudodiaptomus annandalei (Copepoda: Calanoida) by the grouper fish fry Epinephelus coioides under different hydrodynamic conditions. Journal of Experimental Marine Biology and Ecology, 393(1-2), 17–22.
Lee, C.S., O’Bryen, P.J. & Marcus, N.H. (2005) Copepods in aquaculture. Blackwell Publishing Asia, Carlton, Australia.
Lee, K-W., Dahms, H.-U., Park, H.G., Kang, J.-H. (2013) Population growth and productivity of the cyclopoid copepods Paracyclopina nana, Apocyclops royi and the harpacticoid copepod Tigriopus japonicus in mono and polyculture conditions: a laboratory study. Aquaculture Research 44, 836–840.
Lemus, J., Ogle, J. & Lotz, J. (2004) Increasing production of copepod nauplii in a brown-water zooplankton culture with supplemental feeding and increased harvest levels. North American Journal of Aquaculture 66(3), 169-176.
Li, C., Luo, X., Huang, X. & Gu, B. (2009) Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus dubia). The Scientific World Journal 9, 866–79.
Liao, I. C., Su, H. M. & Chang, E. Y. (2001). Techniques in finfish larviculture in Taiwan. Aquaculture (Vol. 200, pp. 1–31).
Lin, L.J., Yen, C.L., Huang, T.S., Liu, C.Y., Chen, C.L. (1986) Experiment of fry nursing of Epinephelus salmonoides (Lacepede) and its morphological study. Bulletin Taiwan Fisheries Research Institute 40, 219–240.
Ludwig, G.M. (2003) The effect of continual, nocturnal, or no aeration on water chemistry and plankton standing crops in highly-fertilized sunshine bass, Morone chrysops × M. saxatilis, fingerling production ponds without fish. Journal of Applied Aquaculture, 14(1-2), 23-41.
Lyndley, L.C. & Phelphs, R.P. (2009) Production and collection of copepod nauplii from brackish water ponds. Journal of Applied Aquaculture 21(2), 96-109.
Marcus, N.H. (2005) Calanoid copepods, resting eggs, and aquaculture. In: Lee, C.S., O’Bryen, P.J. & Marcus, N.H. (2005) Copepods in aquaculture, pp.3-9. Blackwell Publishing Asia, Carlton, Australia.
Marcus, N.H. & Lutz, R.V. (1998) Longevity of subitaneous and diapause eggs of Centropages hamatus (Copepoda: Calanoida) from the Northern Gulf of Mexico. Marine Biology 131, 249-257.
Mauchline, J. 1998. Biology of calanoid copepods, pp. 1-710. Academic Press, San Diego London Boston New York Sydney Tokyo Toronto.
Mollmann, C., Kornilovs, G., Fetter, M., and Koster, F.W. (2004) Feeding ecology of central Baltic Sea herring and spat. Journal of Fish Biology 65, 1563-1581.
O'Bryen, P.J. & Lee, C.-S. (2005) Culture of copepods and applications to marine finfish larval rearingworkshop discussion summary. In: Lee, C.-S., O'Bryen, P.J.,Marcus, N.H. (Eds.), Copepods in Aquaculture, pp. 245–253.
Olivotto, I., Planas, M., Simoes, N., Holt, J.G., Avella, M.A. & Calado R. (2011) Advances in breeding and rearing marine ornamentals. Journal of the World Aquaculture Society 42, 135-166.
Paulsen, H., Munk, P. & Kiørboe, T. (1985) Extensive rearing of turbot larvae (Scophthalmus maximus L.) on low concentrations of natural plankton. ICES Council Meeting Papers F:33/sess. Q, 1-12.
Payne, M.F., Rippingale, R.J. (2001) Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture 201, 329–342.
Payne, M.F., Rippingale, R.J. & Cleary, J.J. (2001) Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture 194, 137–150.
Rajkumar, M. & Kumaraguru Vasagam, K.P. (2006) Suitability of the copepod, Acartia Clausi as a live feed for seabass larvae (Lates Calcarifer Bloch): compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture 261, 649-658.
Rayner, T.A., Jørgensen, N.O.G., Blanda, E., Wu, C.H., Huang, C.C., Mortensen, J., Hwang, J.S. & Hansen B.W. (2015 in press) Biochemical composition of the predominant calanoid copepod species P. annandalei used as live feed. Aquaculture.
Razouls, C., de Bovée, F. & Kouwenberg, J. (2005–2007) Diversity and geographic distribution of marine planktonic copepods. http//: copepods.obs-banyuls.fr/en.
Schipp, G. (2006) The use of calanoid copepods in semi-intensive, tropical marine fish larviculture. En: Editores: L. Elizabeth Cruz Suárez, Denis Ricque Marie, Mireya Tapia Salazar, Martha G. Nieto López, David A. Villarreal Cavazos, Ana C. Puello Cruz y Armando García Ortega. Avances en Nutrición Acuícola VIII .VIII Simposium Internacional de Nutrición Acuícola. 15 - 17 Noviembre. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, pp.84–94. ISBN 970-694-333-5
Schipp, G.R., Bosmans, J.M.P. & Marshall, A.J. (1999) A method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 174, 81-88.
Shields, R.J. (2001) Larviculture of marine finfish in Europe. Aquaculture 200, 55-88.
Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R. & Sargent, J.R. (1999) Natural copepods are superior to enriched artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. The Journal of Nutrition 129(6), 1186–94.
Sorgeloos, P., Coutteau, P., Dhert, P., Merchie, G. & Lavens, P. (1998) Use of brine shrimp, Artemia spp., in larval crustacean nutritoin: a review. Review in Fisheries Science 6, 55-68.
Sorgeloos, P., Dhert, P. & Candreva, P. (2001) Use of brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147-159.
Støttrup, J.G. (2000) The elusive copepods: their production and suitability in marine aquaculture. Aquaculture Research 31, 703–711.
Støttrup JG (2003) Production and nutritional value of copepods. In: Live feeds in marine aquaculture (ed. by Støttrup JG, McEvoy L). Oxford: Blackwell Science Ltd. 168-194.
Støttrup, J.G. (2006) A Review on the status and progress in rearing copepods for marine larviculture . Advantages and Disadvantages . Among Calanoid , Harpacticoid and Cyclopoid Copepods. Avances en nutrición acuícola. Vol. VIII, Mazatlán, Sinaloa, México: Memorías del Octavo Simposium Internacional de Nutrición Acuícola, 2006. p. 62-83.
Støttrup, J.G. & McEvoy, L.A. (2003) Live Feeds in Marine Aquaculture. Blackwell Science, Oxford, UK.. 318 pp.
Støttrup, J.G. & Norsker, N.H. (1997) Production and use of copepods in marine fish larviculture. Aquaculture 155, 231-247.
Su, H.M., Su, M.S. & Liao, I.C. (1982) Collection and culture of live foods for aquaculture in Taiwan. Hydrobiologia 358, 37–40.
Su, H.M, Cheng, S.H., Chen, T.I., & Su, M.S. (2007) Culture of copepods and applications to marine finfish larval rearing in Taiwan. Copepods in Aquaculture, chapter 14.
Sørensen, T.F., Drillet, G., Engell-Sørensen, K., Hansen, B. W. & Ramløv, H. (2007) Production and biochemical composition of eggs from neritic calanoid copepods reared in large outdoors tanks (Limfjord, Denmark). Aquaculture 263, 84-96.
Tacon, A.G.J., Forster, I.P. (2003) Aquafeeds and the environment: policy implications. Aquaculture 226, 181-189.
Toledo, J.D., Golez, M.S., Doi, M., Ohno, A. (1999) Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fishery Science 65, 390–397.
Urup, B. (1994) Methods for the production of turbot fry using copepods as food. In Lavens, P., Remmerswaal, R.A.M (Eds.), Turbot culture: Problems and Prospects. Special Publication. – European Aquaculture Society, vol. 22. Gent, Belgium, pp. 47-55.
Uye, S-I., Nakai, S. & Aizaki, M. (2004) Potential use of extremely high biomass and production of copepods in an enclosed brachish water body in lake NAkaumi, Japan, for the mass seed production of fishes. Zoological studies 43, 165-172.
van der Meeren, T (1991) Selective feeding and prediction of food consumption in turbot larvae (Scophthalmus maximus L.) reared on the rotifer Brachionus plicatilis and natural zooplankton. Aquaculture 9, 35-55.
van der Meeren, T. & Naas, K.E. (1997) Development of rearing techniques using large enclosed ecosystems in the mass production of marine fish fry. Reviews in Fisheries Science 5(4), 367-390.
van der Meeren, T., Karlsen, Ø., Liebig, P. L. & Mangor-Jensen, A. (2014) Copepods production in a saltwater pond system: a reliable method for achievement of natural prey in start-feeding of marine fish larvae. Aquacultural Engineering 62, 17-27.
Watanabe, T., Kitajima, C., Fujita, S., (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34, 115–143.
Watanabe, W.O., Ellis, S.C., Ellis, E.P., Lopez V.G., Bass, P. & Moriwake A. (1996) Evaluation of first-feeding regimens for larval Nassau Grouper Epinephelus striiztus and preliminary, pilot-scale culture through metamorphosis. Journal of the World Aquaculture Society 27 (3) 323–331.
Wurtsbaugh, W.A. & Maciej Gliwicz Z. (2001) Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia 466, 119-132.
Wilcox, J.A., Tracy, P.L. & Marcus, N.H. (2006) Improving live feeds: effect of a mixed diet of copepod nauplii (Acartia tonsa) and rotifers on the survival and growth of first-feeding larvae of the southern flounder, Paralichthys lethostigma. Journal of the World Aquaculture Society 37, 113-120.
Zillioux, E.J. & Gonzales, J.G. (1972) Egg dormancy in a neritic calanoid copepod and its implications to overwintering in boreal waters. In Battaglia, B. (ed.), Fifth European Marine Biology Symposium. Piccin Editore, Padova, pp. 217–230.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊