跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳ㄙ華
研究生(外文):Chen, Sih-Hua
論文名稱:以耳石形態學暨微化學分析探討臺灣周邊水域尖頭細身飛魚 (Hirundichthys oxycephalus) 和斑鰭飛魚 (Cypselurus poecilopterus) 可能之系群結構
論文名稱(外文):Possible stock structure of bony flyingfish (Hirundichthys oxycephalus) and yellowing flyingfish (Cypselurus poecilopterus) in surrounding waters of Taiwan: an integrated approach based on the otolith morphology and microchemistry analyses.
指導教授:王世斌王佳惠王佳惠引用關係
指導教授(外文):Wang, Shyh-BinWang, Chia-Hui
口試委員:王世斌王佳惠蕭仁杰邱萬敦
口試委員(外文):Wang, Shyh-BinWang, Chia-HuiShiao, Jen-ChiehChiou, Wann-Duen
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋事務與資源管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:61
中文關鍵詞:尖頭細身飛魚斑鰭飛魚系群結構耳石形態學耳石微化學
外文關鍵詞:bony flyingfish (Hirundichthys oxycephalus)Yellowing flyingfish (Cypselurus poecilopterus)stock structureotolith morphometryotolith microchemistry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用耳石形態學(含形態指標與橢圓傅立葉分析)暨耳石核心微化學(含鍶/鈣、鋇/鈣、鎂/鈣、鋅/鈣及錳/鈣比)兩種分析方法並配合先前之相關研究共同探討臺灣周邊水域產尖頭細身飛魚 (Hirundichthys oxycephalus) 和斑鰭飛魚 (Cypselurus poecilopterus) 可能之系群結構。分析樣本來源為2015年臺灣北部、南部暨西南(澎湖)海域,及2016年東南(綠島)海域所採之漁獲。結果顯示,臺灣北部及南部所採之尖頭細身飛魚其耳石形態與耳石核心內微量元素均有顯著差異 (MANOVA, p < 0.05),而澎湖海域之尖頭細身飛魚耳石形態與南、北部採到的個體均無顯著差異,但耳石核心內微量元素則與北部海域的個體有顯著差異;而斑鰭飛魚分析結果則顯示南、北及東南三樣點間耳石形態與耳石核心微量元素均無顯著差異 (MANOVA, p > 0.05)。此結果說明,臺灣北部與南部所採之尖頭細身飛魚可能分屬不同之系群;而斑鰭飛魚則可能為同一系群。本研究分析結果也顯示,利用多重方法的整合性分析為魚類系群判別的有效工具,並將提供臺灣飛魚漁業及東北部飛魚卵漁業重要之管理依據。
The possible stock structure of bony flyingfish (Hirundichthys oxycephalus) and yellowing flyingfish (Cypselurus poecilopterus) in surrounding waters of Taiwan were examined based on both otolith morphometry (including morphometric indices and elliptical Fourier analysis) and microchemistry of core of the otolith (including Sr/Ca, Ba/Ca, Mg/Ca, Zn/Ca and Mn/Ca ratios) in company with other previous studies. Fish samples were collected from northern, southern and southwestern (Penghu) waters of Taiwan in 2015, and in partial from southeastern (Green island) waters in 2016. The results showed that H. oxycephalus collected from northern were significant differences in both elemental ratios and combined morphometric analysis from those in southern Taiwan (MANOVA, p < 0.05), but samples obtained from southeastern (Penghu) Taiwan was different from those in northern Taiwan only in elemental ratios, but not for morphometric analysis. However, no differences were detected for both elemental ratios and combined morphometric analysis for C. poecilopterus collected from all three sampling sites (MANOVA, p > 0.05). These results implied that two geographically different stocks may be existed for H. oxycephalus collected in Taiwan, while for the C. poecilopterus, a single stock could be assumed. Our results highlighted the effectiveness of holistic approaches in stock discrimination, and may provide useful guideline for future management of flyingfish and flyingfish roe fisheries in Taiwan.
目錄
表目錄 III
圖目錄 V
中文摘要 VII
英文摘要 VIII
第一章 前言 1
1.1臺灣飛魚漁業及飛魚卵漁業 1
1.2研究魚種介紹 2
1.2.1 尖頭細身飛魚 2
1.2.2 斑鰭飛魚 3
1.3飛魚相關研究 3
1.4系群判別的重要性 4
1.5耳石形態學分析與應用 5
1.6耳石微化學分析之應用原理 6
1.7研究動機目的與假說 7
第二章 材料與方法 8
2.1樣本採集與資料收集 8
2.2樣本與耳石處理 8
2.3耳石形態學分析 8
2.3.1 耳石形態指標 (Shape indices) 9
2.3.2 耳石橢圓傅立葉 (Elliptical Fourier) 9
2.4耳石微化學分析 10
2.4.1樣本分析前處理 10
2.4.2微量元素分析 10
2.6統計分析 11
2.6.1耳石形態學分析 11
2.6.2耳石微化學分析 12
第三章 結果 13
3.1樣本組成 13
3.2耳石形態學分析 13
3.3耳石微化學分析 14
第四章 討論 16
4.1耳石形態學分析 16
4.2耳石微化學分析 17
4.4系群結構 18
4.4.1尖頭細身飛魚 18
4.4.2斑鰭飛魚 19
4.5漁業管理思維與建議 20
參考文獻 22
附表 35
附圖 48

(中文文獻)
于鑫、曹亮、南鷗、趙博、竇碩增 (2013) 基於矢耳石形態分析鳳鱭 (Coilia mystus) 群體識別研究。海洋與湖沼,第44卷,第3期,第768-774頁。
王世斌 (2008) 臺灣沿近海飛魚資源動態與管理措施之研究。行政院農委會漁業署九十七年度科技計畫研究報告。
王世斌、莊立在、張晉嘉 (2009) 臺灣沿近海飛魚資源動態與管理措施之研究。行政院農委會漁業署九十八年度科技計畫研究報告。
王世斌、莊立在、湯詠盈 (2010) 臺灣沿近海飛魚資源動態與管理措施之研究。行政院農委會漁業署九十九年度科技計畫研究報告。
王世斌、莊立在、林妍彤、陳雅凡 (2011) 臺灣沿近海飛魚資源動態與管理措施之研究。行政院農委會漁業署一百年度科技計畫研究報告。
王世斌、莊立在、劉子豪、江俊毅 (2012) 臺灣沿近海飛魚資源動態與管理措施之研究。行政院農委會漁業署一百零一年度科技計畫研究報告。
王世斌 (2012) 臺灣的飛魚卵漁業。臺灣水產雙月刊,第7卷,第6期,第13-20頁。
王世斌、邱萬敦、陳ㄙ華、歐任淳、陳封邑、王靜玉 (2015a) 臺灣周邊水域飛魚(卵)資源動態解析及飛魚(卵)漁業利用與管理之研究。行政院農委會漁業署一百零四年度科技計畫研究報告。
王世斌 (2015b) 臺灣飛魚卵總容許漁獲量等科研探討及資源利用現況。臺灣水產雙月刊。第11卷,第1期,第30-37頁。
王冑 (2011) 海洋學教材。網路電子版http://w3.oc.ntu.edu.tw/index.html 。
方瑞遠 (2004) 應用橢圓傅立葉函數分析嬰兒頭形之研究。逢甲大學自動控制工程研究所碩士論文。
李俊廷 (2011) 臺灣黑潮海域斑鰭飛魚生殖生物學研究。國立中山大學海洋生物研究所碩士論文。
林宗威 (2011) 以粒線體COI基因探討西北太平洋尖頭細身飛魚之族群親緣關係。國立中山大學海洋生物研究所碩士論文。
林忠暉 (2010) 臺灣東部尖頭細身飛魚耳石年齡與成長研究及其在漁業管理上之意涵。國立中山大學海洋事務研究所碩士論文。
邵廣昭 (2016) 臺灣魚類資料庫。網路電子版http://fishdb.sinica.edu.tw。
洪國堯 (2008) 建立飛魚漁業管理制度之成果與展望。農委會出版品,農政與農情,194期。
袁瀠晴 (2014) 以穩定性同位素組成探討尖頭細身飛魚之洄游動向及食性階層。國立臺灣大學海洋研究所碩士論文。
黃哲崇 (1985) 臺灣東部沿岸海域仔稚魚苗資源之研究。農委會漁業特刊第二號。
張冠翔 (2009) 斑鰭飛魚 (Cyseluruspoecilopterus) 骨骼肌之蛋白質體研究。國立中山大學海洋生物研究所碩士論文。
郭子豪 (2013) 以細胞色素b探討臺灣海域斑鰭飛魚 (Cyseluruspoecilopterus) 族群遺傳結構。國立中山大學生物科學研究所碩士論文。
曾萬年 (2006) 隱藏在魚類內耳裡的生活史祕密:耳石的構造和微化學及其生態應用。國立臺灣大學漁業科學研究所,第26-27頁。
聞慧、王心麗 (2013) 輪廓形態測量法在生物分類應用中的研究進展。應用昆蟲学报,第50卷,第5期,第1438-1446頁。
薛麗妮 (2007) 端午到、飛魚躍—飛魚卵的省思。網站:http://www.fa.gov.tw/chn/forum/board/ViewArtical.php?usedYear=2007&id=694
賴坤成 (2005) 留點飛魚給達悟人!網站:http://www.libertytimes.com.tw/2005/new/ apr/22/ today-o1.htm
劉振鄉 (1997),深具觀光潛力的蘭嶼飛魚文化,海洋臺灣雙月刊第3期。
竇碩增、于鑫、曹亮 (2012) 魚類耳石形態分析及其在群體識別中的應用實例研究。海洋與湖沼,第43卷,第4期,第702-712頁。
(英文文獻)
Adkison, M. D. (1995). Population differentiation in Pacific salmons: local adaptation genetic drift, or the environment?. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2762-2777.
Altukhov, Y. P. (1981). The stock concept from the viewpoint of population genetics. Canadian Journal of Fisheries and Aquatic Sciences, 38 (12), 1523-1538.
Ashford, J. R., Arkhipkin, A. I., & Jones, C. M. (2006). Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides?. Journal of Fish Biology, 69 (3), 708-721.
Begg, G. A., & Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research, 43 (1), 35-44.
Begg, G. A., & Weidman, C. R. (2001). Stable δ13C and δ18O isotopes in otoliths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean. Marine Ecology Progress Series, 216, 223-233.
Blamart, D., Juillet-Leclerc, A., Ouahdi, R., Escoubeyrou, K., & Lecomte-Finiger, R. (2002). Stable isotope compositions (OC) of reef fish otoliths from the Taiaro lagoon (Tuamotu, French Polynesia): isotopic and biologic implications. Comptes Rendus. Biologies, 99-106.
Brazner, J. C., Campana, S. E., & Tanner, D. K. (2004). Habitat fingerprints for Lake Superior coastal wetlands derived from elemental analysis of yellow perch otoliths. Transactions of the American Fisheries Society, 133 (3), 692-704.
Brophy, D., Danilowicz, B. S., & Jeffries, T. E. (2003). The detection of elements in larval otoliths from Atlantic herring using laser ablation ICP‐MS. Journal of Fish Biology, 63 (4), 990-1007.
Burke, N., Brophy, D., & King, P. A. (2008). Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science, 65(9), 1670-1675.
Cadrin, S. X., & Friedland, K. D. (1999). The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research, 43(1), 129-139.
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297.
Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., & Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46 (1), 343-357.
Campana, S. E., & Casselman, J. M. (1993). Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50 (5), 1062-1083.
Campana, S. E., Fowler, A. J., & Jones, C. M. (1994). Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences, 51 (9), 1942-1950.
Cañás, L., Stransky, C., Schlickeisen, J., Sampedro, M. P., & Fariña, A. C. (2012). Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES Journal of Marine Science, 69, 1-7.
Carlström, D. (1963). A crystallographic study of vertebrate otoliths. Biological Bulletin, 125(3), 441-463.
Carvalho, G. R., & Hauser, L. (1995). Molecular genetics and the stock concept in fisheries. In: Molecular Genetics in Fisheries, (Carvalho, G. R., and Pitcher, T. J., eds.), London, England, 55-79.
Clarke, L. M., Thorrold, S. R., & Conover, D. O. (2010). Population differences in otolith chemistry have a genetic basis in Menidia menidia. Canadian Journal of Fisheries and Aquatic Sciences, 68 (1), 105-114.
Claytor, R. R. & MacCrimmon, H. R. (1987). Partitioning size from morphometric data: a comparison of five statistical procedures used in fisheries stock identification research. Canadian Technical Report of Fisheries and Aquatic Services, 1531, 31 pp.
Chang, C. W., Lin, C. H., Chen, Y. S., Chen, M. H., & Chang, S. K. (2012). Age validation, growth estimation and cohort dynamics of the bony flying fish Hirundichthys oxycephalus off eastern Taiwan. Aquatic Biology, 15(3), 251-260.
Chang, M. Y., Geffen, A. J., Kosler, J., Dundas, S. H., Maes, G. E., & FishPopTrace Consortium. (2012). The effect of ablation pattern on LA-ICPMS analysis of otolith element composition in hake, Merluccius merluccius. Environmental Biology of Fishes, 95(4), 509-520.
Chang, S. K., Chang, C. W., & Ame, E. (2012). Species composition and distribution of the dominant flyingfishes (Exocoetidae) associated with the Kuroshio Current, South China Sea. The Raffles Bulletin of Zoology, 60 (2), 539-550.
Correia, A. T., Hamer, P., Carocinho, B., & Silva, A. (2014). Evidence for meta-population structure of Sardina pilchardus in the Atlantic Iberian waters from otolith elemental signatures of a strong cohort. Fisheries Research, 149, 76-85.
Davenport, J. (1994). How and why do flying fish fly?. Reviews in Fish Biology and Fisheries, 4 (2), 184-214.
Davenport, J. (2003). Allometric constraints on stability and maximum size in flying fishes: implications for their evolution. Journal of Fish Biology, 62 (2), 455-463.
DeVries, D. A., Grimes, C. B., & Prager, M. H. (2002). Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research, 57(1), 51-62.
Doering-Arjes, P., Cardinale, M., & Mosegaard, H. (2008). Estimating population age structure using otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua) individuals. Canadian Journal of Fisheries and Aquatic Sciences, 65(11), 2342-2350.
Dou, S. Z., Amano, Y., Yu, X., Cao, L., Shirai, K., Otake, T., & Tsukamoto, K. (2012). Elemental signature in otolith nuclei for stock discrimination of anadromous tapertail anchovy (Coilia nasus) using laser ablation ICPMS. Environmental Biology of Fishes, 95 (4), 431-443.
Dufour, E., Patterson, W. P., Höök, T. O., & Rutherford, E. S. (2005). Early life history of Lake Michigan alewives (Alosa pseudoharengus) inferred from intra-otolith stable isotope ratios. Canadian Journal of Fisheries and Aquatic Sciences, 62 (10), 2362-2370.
Edmonds, J. S., Lenanton, R. C. J., Caputi, N., & Morita, M. (1992). Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification. Fisheries Research, 13 (1), 39-51.
Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., & Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: an annual review, 46(1), 297-330.
Feyrer, F., Hobbs, J., Baerwald, M., Sommer, T., Yin, Q. Z., Clark, K., May, B., & Bennett, W. (2007). Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish. Transactions of the American Fisheries Society, 136 (2), 469-476.
Gallahar, N. K., & Kingsford, M. J. (1996). Factors influencing Sr/Ca ratios in otoliths of Girella elevata: an experimental investigation. Journal of Fish Biology, 48(2), 174-186.
Gauldie, R. W., & Crampton, J. S. (2002). An eco‐morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology, 60 (5), 1204-1221.
Gillanders, B. M., & Kingsford, M. J. (1996). Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series, 141, 13-20.
Gomes, C., Mahon, R., Hunte, W., & Singh-Renton, S. (1998). The role of drifting objects in pelagic fisheries in the Southeastern Caribbean. Fisheries Research, 34(1), 47-58.
Grimes, C. B., Johnson, A. G., & Fable Jr, W. A. (1985). Delineation of king mackerel (Scomberomorus cavalla) stocks along the US east coast and in the Gulf of Mexico. In: Proceedings of the Stock Identification Workshop, (Kumpf, H. E., Vaught, R. N., Grimes, C. B., Johnson, A. G., and Nakamura, E. L., eds.), Panama, City Beach, Florida. NOAA Technical Memorandum NMFS-SEFC-199. Unites States Government Printing Office, 5 (7), 186-187.
Hammer, C. & Zimmermann, C. (2005). The role of stock identification in formulating fishery management advice. In: Stock Identification Methods: Applications in Fishery Science, (Cadrin, S. X., Friedland, K. D., and Waldman, J. R., eds.), Elsevier, Burlington, Massachusetts, USA, 631-658.
Hamer, P. A., & Jenkins, G. P. (2007). Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology, 71(4), 1035-1055.
Høie, H., Folkvord, A., & Otterlei, E. (2003). Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths. Journal of Experimental Marine Biology and Ecology, 289 (1), 41-58.
Hubbs, C. L., & Kampa, E. M. (1946). The early stages (egg, prolarva and juvenile) and the classification of the California flyingfish. Copeia, 1946(4), 188-218.
Ichimaru, T., Mizuta, K., & Nakazono, A. (2006). Studies on the egg morphology and spawning season in the mirror-finned flying fish Hirundichthys oxycephalus in the waters near Kyushu, Japan. Nippon Suisan Gakkaishi,72 (1), 21-26.
Jan, S., Wang, J., Chern, C. S., & Chao, S. Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3), 249-268.
Jonsson, B., & Jonsson, N. (2001). Polymorphism and speciation in Arctic charr. Journal of Fish Biology, 58 (3), 605-638.
Keating, J. P., Brophy, D., Officer, R. A., & Mullins, E. (2014). Otolith shape analysis of blue whiting suggests a complex stock structure at their spawning grounds in the Northeast Atlantic. Fisheries Research, 157, 1-6.
Kutkuhn, J. H. (1981). Stock definition as a necessary basis for cooperative management of Great Lakes fish resources. Canadian Journal of Fisheries and Aquatic Sciences, 38 (12), 1476-1478.
Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18 (3), 236-258.
Law, R. (2000). Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science, 57(3), 659-668.
Lin, H. Y., Shiao, J. C., Chen, Y. G., & Iizuka, Y. (2012). Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep Sea Research Part I: Oceanographic Research Papers, 61, 123-130.
Lombarte, A. (1992). Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes, 33 (4), 405-410.
Lombarte, A., & Cruz, A. (2007). Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology, 71 (1), 53-76.
Lombarte, A., & Lleonart, J. (1993). Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37 (3), 297-306.
Lombarte, A., Palmer, M., Matallanas, J., Gómez-Zurita, J., & Morales-Nin, B. (2010). Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes, 89 (3-4), 607-618.
Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A., & Mariani, S. (2010). A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes, 89 (3-4), 591-605.
Luczkovich, J. J., Norton, S. R., & Gilmore Jr, R. G. (1995). The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Environmental Biology of Fishes, 44 (1-3), 79-95.
Martin, G. B., & Wuenschel, M. J. (2006). Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Marine Ecology Progress Series, 324, 229-239.
Morales-Nin, B. (1987). Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: The Age and Growth of Fish, (Summerfelt, R. C.,and Hall, G. E., eds.), Iowa State University Press, Ames, Iowa, 331-343.
Morales-Nin, B. (2000). Review of the growth regulation processes of otolith daily increment formation. Fisheries Research, 46 (1), 53-67.
Munro, A. R., McMahon, T. E., & Ruzycki, J. R. (2005). Natural chemical markers identify source and date of introduction of an exotic species: lake trout (Salvelinus namaycush) in Yellowstone Lake. Canadian Journal of Fisheries and Aquatic Sciences, 62 (1), 79-87.
Newman, S. J., Cappo, M., & Williams, D. M. (2000). Age, growth, mortality rates and corresponding yield estimates using otoliths of the tropical red snappers, Lutjanus erythropterus, L. malabaricus and L. sebae, from the central Great Barrier Reef. Fisheries Research, 48 (1), 1-14.
Neves, A., Sequeira, V., Farias, I., Vieira, A. R., Paiva, R., & Gordo, L. S. (2011). Discriminating bluemouth, Helicolenus dactylopterus (Pisces: Sebastidae), stocks in Portuguese waters by means of otolith shape analysis. Journal of the Marine Biological Association of the United Kingdom, 91 (06), 1237-1242.
Niklitschek, E. J., Secor, D. H., Toledo, P., Lafon, A., & George-Nascimento, M. (2010). Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: integrating evidence from complementary otolith microchemistry and parasite assemblage approaches. Environmental Biology of Fishes, 89(3-4), 399-413.
Nolf, D. (1985). Otolithi piscium. In: Handbook of Paleoichthyology, (Schultze, H. P., ed.), Gustav Fischer Verlag, Stuttgart, 10, 1-45.
Northcote, T. G., Hendy, C. H., Nelson, C. S., & Boubee, J. A. T. (1992). Tests for migratory history of the New Zealand common smelt (Retropinna retropinna (Richardson) using otolith isotopic composition. Ecology of Freshwater Fish, 1 (1), 61-72.
Otterlei, E., Folkvord, A., & Nyhammer, G. (2002). Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science, 59(2), 401-410.
Ovenden, J. R. (1990). Mitochondrial DNA and marine stock assessment: a review. Australian Journal of Marine and Freshwater Research, 41(6), 1990.
Oxenford, H. A., Mahon, R. & Hunte, W. (1989). Relative abundance and distribution of adult flyingfish in the eastern Carribean. 42nd Annual Meeting, Gulf and Carribean Fisheries Institute, 13 pp.
Oxenford, H. A., Hunte, W., Deane, R., & Campana, S. E. (1994). Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean. Marine Biology, 118(4), 585-592.
Oxenford, H. A. (1994). Movements of flyingfish (Hirundichthys affinis) in the eastern Caribbean. Bulletin of Marine Science, 54(1), 49-62.
Palumbi, S. R. (2003). Population genetics, demographic connectivity, and the design of marine reserves. Ecological Applications, 146-158.
Parin, N. V., & Shakhovskoy, I. B. (2000). A review of the flying fish genus Exocoetus (Exocoetidae) with descriptions of two new species from the southern Pacific Ocean. Journal of Ichthyology, 40 (1), S31.
Patterson, W. P., Smith, G. R., & Lohmann, K. C. (1993). Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In: Climate Change in Continental Isotopic Records, (Swart, P. K., Lohmann, K. C., Mckenzie, J., and Savin, S., eds.), American Geophysical Union, USA, 191-202.
Patterson, H. M., Thorrold, S. R., & Shenker, J. M. (1999). Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas andBelize using solution-based ICP-MS. Coral Reefs, 18 (2), 171-178.
Patterson, H. M., McBride, R. S., & Julien, N. (2004). Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Marine Biology, 144 (5), 855-862.
Paxton, J. R. (2000). Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence?. Philosophical Transactions of the Royal Society B: Biological Sciences, 355 (1401), 1299-1303.
Reist, J. D. (1985). An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Canadian Journal of Zoology, 63(6), 1429-1439.
Reichenbacher, B., Sienknecht, U., Küchenhoff, H., & Fenske, N. (2007). Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius,† Prolebias). Journal of Morphology, 268 (10), 898-915.
Reznick, D., Lindbeck, E., & Bryga, H. (1989). Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 46(1), 108-112.
Ricker, W. E. (1981). Changes in the average size and average age of Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 38 (12), 1636-1656.
Robinson, B. W., & Wilson, D. S. (1994). Character release and displacement in fishes: a neglected literature. The American Naturalist, 144 (4), 596-627.
Rooker, J. R., Secor, D. H., Zdanowicz, V. S., & Itoh, T. (2001). Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Marine Ecology Progress Series, 218, 275-282.
Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A. A., Fatemi, M. R., Lombarte, A., & Tuset, V. M. (2014). Use of otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research, 155, 59-63.
Schaffler, J. J., & Winkelman, D. L. (2008). Temporal and spatial variability in otolith trace-element signatures of juvenile striped bass from spawning locations in Lake Texoma, Oklahoma-Texas. Transactions of the American Fisheries Society, 137 (3), 818-829.
Secor, D. H., & Dean, J. M. (1989). Somatic growth effects on the otolith-fish size relationship in young pond-reared striped bass, Morone saxatilis. Canadian Journal of Fisheries and Aquatic Sciences, 46(1), 113-121.
Secor, D. H., & Zdanowicz, V. S. (1998). Otolith microconstituent analysis of juvenile bluefin tuna (Thunnus thynnus) from the Mediterranean Sea and Pacific Ocean. Fisheries Research, 36 (2), 251-256.
Shakhovskoi, I. B. (2004). Skull Morphology in the Flying Fish Cheilopogon papilio (Exocetidae). Journal of Ichthyology, 44 (5), 358-365.
Shaw, P. T. (1991). The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research: Oceans, 96(C1), 821-827.
Smith, M. K. (1992). Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Canadian Journal of Fisheries and Aquatic Sciences, 49(4), 795-804.
Smith, S. J., & Campana, S. E. (2010). Integrated stock mixture analysis for continous and categorical data, with application to genetic-otolith combinations. Canadian Journal of Fisheries and Aquatic Sciences, 67 (10), 1533-1548.
Smith, P. J., Francis, R. I. C. C., & McVeagh, M. (1991). Loss of genetic diversity due to fishing pressure. Fisheries Research, 10 (3), 309-316.
Solomon, C. T., Weber, P. K., Cech, Jr, J. J., Ingram, B. L., Conrad, M. E., Machavaram, M. V., Pogodina, A. R., & Franklin, R. L. (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences, 63 (1), 79-89.
Stransky, C., Murta, A. G., Schlickeisen, J., & Zimmermann, C. (2008). Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fisheries Research, 89 (2), 159-166.
Tanner, S. E., Reis-Santos, P., & Cabral, H. N. (2016). Otolith chemistry in stock delineation: A brief overview, current challenges and future prospects. Fisheries Research, 173, 206-213.
Teimori, A., Abd Jalil Jawad, L., Al-Kharusi, L. H., Al-Mamry, J. M., & Reichenbacher, B. (2012). Late Pleistocene to Holocene diversification and historical zoogeography of the Arabian killifish (Aphanius dispar) inferred from otolith morphology. Scientia Marina, 76 (4), 637-645.
Thorrold, S. R., Jones, C. M., & Campana, S. E. (1997). Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnology and Oceanography, 42 (1), 102-111.
Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., & Lam, J. W. (1998). Trace element signatures in otoliths record natal river of juvenile American shad (Alosa sapidissima). Limnology and Oceanography, 43 (8), 1826-1835.
Tuset, V. M., Piretti, S., Lombarte, A., & González, J. A. (2010). Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters. Scientia Marina, 74 (4), 807-814.
Vignon, M. (2012). Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology, 420, 26-32.
Vignon, M., & Morat, F. (2010). Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series, 411, 231-241.
Volpedo, A., & Echeverrı́, D. D. (2003). Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research, 60 (2), 551-560.
Waldman, J. R., Grossfield, J., & Wirgin, I. (1988). Review of stock discrimination techniques for striped bass. North American Journal of Fisheries Management, 8(4), 410-425.
Waples, R. S., & Naish, K. A. (2009). Genetic and evolutionary considerations in fishery management: research needs for the future. In: The Future of Fisheries Science in North America, (Beamish, R. and Rothschild, B., eds.), Springer Nature, New York, 427-451.
Weidel, B. C., Ushikubo, T., Carpenter, S. R., Kita, N. T., Cole, J. J., Kitchell, J. F., Pace, M. L., & Valley, J. W. (2007). Diary of a bluegill (Lepomis macrochirus): daily δ13C and δ18O records in otoliths by ion microprobe. Canadian Journal of Fisheries and Aquatic Sciences, 64 (12), 1641-1645.
Wainwright, P. C., & Bellwood, D. R. (2002). Ecomorphology of feeding in coral reef fishes. In: Coral reef fishes: Dynamics and Diversity in a Complex Ecosystem (Sale, P. F., ed.), Academic Press, San Diego, CA, USA, 33-55.
Weidman, C. R., & Millner, R. (2000). High-resolution stable isotope records from North Atlantic cod. Fisheries Research, 46 (1), 327-342.
Wells, B. K., Rieman, B. E., Clayton, J. L., Horan, D. L., & Jones, C. M. (2003). Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d'Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society, 132 (3), 409-424.
Whitledge, G. W., Johnson, B. M., Martinez, P. J., & Martinez, A. M. (2007). Sources of nonnative centrarchids in the upper Colorado River revealed by stable isotope and microchemical analyses of otoliths. Transactions of the American Fisheries Society, 136 (5), 1263-1275.
Williams, H. H., MacKenzie, K., & McCarthy, A. M. (1992). Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries, 2(2), 144-176.
Wright, A., & Hill, L. (1993). Nearshore Marine Resources of the South Pacific: Information for Fisheries Development and Management, 713pp. International Center for Ocean Development, Canada.
Zeigler, J. M., & Whitledge, G. W. (2010). Assessment of otolith chemistry for identifying source environment of fishes in the lower Illinois River, Illinois. Hydrobiologia, 638 (1), 109-119.
Zhang, Z. (1992). Ultrastructure of otolith increments and checks in the teleost fish Oreochromis niloticus. Journal of Morphology, 211 (2), 213-220.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top