跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪澤軒
研究生(外文):Hung, Tse-Hsuan
論文名稱:延遲付款下的多階整合組裝存貨模型
論文名稱(外文):Multi-Echelons Integrated Assembly Production Inventory Model under Permissible Delay in Payment
指導教授:楊明峯楊明峯引用關係
指導教授(外文):Yang, Ming-Feng
口試委員:蘇健民鍾玉科趙延丁
口試委員(外文):Su, Chien-MinChung, Yu-KeChao, Yen-Ting
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:運輸科學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:69
中文關鍵詞:整合存貨模型延遲付款物料清單不良品粒子群演算法
外文關鍵詞:Integrated inventory modelPermissible delay in paymentBill of materialDefective productParticle Swarm Optimization (PSO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在現今全球化的時代,資訊與物品流通方便,也使買賣之定價日趨穩定,所以公司間無不各出奇招以求得更好的利潤,其中整合上下游廠商以降低成本是常見的經營策略之一,而在供應鏈管理中,存貨策略是改善營運績效的關鍵之一,而這也是近年來各國學者持續研究的議題。這篇論文是在各階層允許延遲付款的情況下,考慮多供應商、單一製造商以及多階零售商的存貨模型,並求解此供應鏈之最大利潤。各供應商分別製造一到多個不同的零組件,再送至製造商端進行組裝;而現實生活中,在生產零組件或是組裝的過程中,難免因人為疏漏或機械故障而造成不良品的產生,本研究便將此情境加進模型之中,為避免顧客拿到損壞品,供應商與製造商在生產、組裝之後會先對存貨進行檢查,並將不良品進行重工;另一方面,延遲付款已是現今供應鏈系統中常見的存貨策略之一,意即賣方允許買方收到貨品時不需立即付款,根據延遲付款時間的長短,供應鏈成員也會產生額外的機會成本或利息收入,也使整體模型產生更多變化;綜合以上幾點,本研究將發展一個在延遲付款下,有不良品產生以及零組件組裝的多階整合存貨模型;在數據範例中,以PSO與Lingo演算模型,並比較其求解效率;最後對重要參數進行敏感度分析。
In this competitive environment, supply chain members recognize the importance of interactions between financial and inventory decisions in the development of effective supply chains. In the supply chain management, the inventory policy is a key to improve the performance. Moreover, achieving effective coordination among the supply chain members has become a pertinent research issue. This paper considers a multi-echelons model, consisting of suppliers, one manufacturer and multi-retailers, coordinating their situations to maximize the total supply chain profits. Each supplier supplies one or more components required in the final product produced; In the process of production, human error and machine malfunction may make some products damaged. To prevent buyer get defective products, the producer has to check all inventories and fixes the damaged products; Permissible delay in payments is one of the common inventory strategies. It means the vendor allows the buyer can receive products without payment immediately. Depending on the length of the delay time of payment, supply chain members will also generate additional opportunity costs or interest income; This paper develops a multi-echelons inventory model with bill of materials (BOM) and imperfect quality products under permissible delay in payment.
Table of Contents
摘 要 III
Abstract IV
Table of Contents V
List of Figures VII
List of Tables VIII
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Purpose 2
1.3 Research Contents and Scope 2
1.3.1 The Influences of Permissible Delay in Payments 2
1.3.2 The Influences of Defective Product 3
1.3.3 The Influences of Assembly System 3
1.4 Research Procedures 4
Chapter 2 Literature Review 7
2.1 Integrated Model 7
2.2 Permissible Delay in Payment 9
2.3 Bill of Material 10
2.4 Defective Product 11
Chapter 3 Research method 14
3.1 Notations 14
3.1.1 Decision Variable 14
3.1.2 Supplier’s Side 14
3.1.3 Manufacturer’s Side 15
3.1.4 Retailer’s Side 15
3.1.5 Other Notations 15
3.2 Assumptions 16
3.3 Particle Swarm Optimization 16
3.3.1 PSO Introduction 16
3.3.2 Vectors and Parameters of PSO 18
3.3.3 Parameter Setting 20
Chapter 4 Building Model 22
4.1 Model without Permissible Delay in Payment 22
4.1.1 Supplier’s Expected Total Annual Profit 22
4.1.2 Manufacturer’s Expected Total Annual Profit 24
4.1.3 Retailer’s Expected Total Annual Profit 26
4.1.4 Integrated Inventory Model – EJTP 1 27
4.2 Model with Permissible Delay in Payment 27
4.2.1 Supplier’s Additional Profit and Cost 27
4.2.2 Manufacturer’s Additional Profit and Cost 31
4.2.3 Retailer’s Additional Profit and Cost 33
4.3 Expected Joint Total Profit 36
Chapter 5 Numerical Example 40
5.1 PSO Data Setting 40
5.1.1 Particles Location Restrictions 40
5.1.2 Particles Velocity Restrictions 40
5.1.3 Other Values Setting 41
5.2 Example 42
5.2.1 Example Introduction 42
5.2.2 Calculation Result 43
5.2.3 Sensitivity Analysis 48
Chapter 6 Conclusions and Recommendations 52
6.1 Conclusions 52
6.2 Recommendations 53
Reference 54
Appendix I 58
Appendix II 62
Appendix III 69


Reference
Banerjee, A. (1986). A joint economic‐lot‐size model for purchaser and vendor. Decision sciences, 17(3), 292-311.
Chang, H.-J., Su, R.-H., Yang, C.-T., & Weng, M.-W. (2012). An economic manufacturing quantity model for a two-stage assembly system with imperfect processes and variable production rate. Computers & Industrial Engineering, 63(1), 285-293.
Chen, S.-C., & Teng, J.-T. (2014). Retailer’s optimal ordering policy for deteriorating items with maximum lifetime under supplier’s trade credit financing. Applied Mathematical Modelling, 38(15), 4049-4061.
Chiu, C.-Y., Yang, M.-F., Tang, C.-J., & Lin, Y. (2013). Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial and Management Optimization, 9(4), 945-965.
Danilovic, M. & Vasiljevic, D. (2014). A novel relational approach for assembly system supply planning under environmental uncertainty. International Journal of Production Research, 52(13), 4007-4025.
Das, D., Roy, A., & Kar, S. (2015). A multi-warehouse partial backlogging inventory model for deteriorating items under inflation when a delay in payment is permissible. Annals of Operations Research, 226(1), 133-162.
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper presented at the Proceedings of the sixth international symposium on micro machine and human science.
Elhafsi, M., Zhi, L., Camus, H. & Craye, E. (2009). Managing product availability in an assemble-to-order supply chain with multiple customer segments Supply Chain Planning (pp. 1-24): Springer.

Ervolina, T. R., Ettl, M., Lee, Y. M., & Peters, D. J. (2009). Managing product availability in an assemble-to-order supply chain with multiple customer segments Supply Chain Planning (pp. 1-24): Springer.
Goyal, S. (1977). An integrated inventory model for a single supplier-single customer problem. The International Journal of Production Research, 15(1), 107-111.
Goyal, S. K., & Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. International Journal of Production Economics, 77(1), 85-87.
Hill, R. M. (1997). The single-vendor single-buyer integrated production-inventory model with a generalised policy. European Journal of Operational Research, 97(3), 493-499.
Hillier, M. S. (2002). The costs and benefits of commonality in assemble-to-order systems with a (Q, r)-policy for component replenishment. European Journal of Operational Research, 141(3), 570-586.
Hsu, L.-F., & Hsu, J.-T. (2014). Economic production quantity (EPQ) models under an imperfect production process with shortages backordered. International Journal of Systems Science(ahead-of-print), 1-16.
Iravani, S., Luangkesorn, K., & Simchi-Levi, D. (2003). On assemble-to-order systems with flexible customers. IIE Transactions, 35(5), 389-403.
Jaber, M., & Goyal, S. (2008). Coordinating a three-level supply chain with multiple suppliers, a vendor and multiple buyers. International Journal of Production Economics, 116(1), 95-103.
Jaber, M. Y., & Osman, I. H. (2006). Coordinating a two-level supply chain with delay in payments and profit sharing. Computers & Industrial Engineering, 50(4), 385-400.
Jaber, M. Y., Zanoni, S., & Zavanella, L. E. (2014). Economic order quantity models for imperfect items with buy and repair options. International Journal of Production Economics, 155, 126-131.
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization Proceedings of IEEE International Conference on Neural Networks, IV, 1942-1948.
Lee, H. L., & Rosenblatt, M. J. (1987). Simultaneous determination of production cycle and inspection schedules in a production system. Management science, 33(9), 1125-1136.
Lee, S., & Kim, D. (2014). An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items. International Journal of Production Economics, 147, 161-170.
Liu, Y., Chang, Q., Zhang, Z. &Gao, H. (2009). Optimal Dynamic Substitution Policy for Components in an Assemble-To-Order System. 9th International Conference of Chinese Transportation Professionals, ICCTP 2009, 358, 3204-3209
Liu, G. (2010). Coordinating Three-Level Supply Chain with Quantity Discount Policies. Management and Service Science (MASS), 2010 International Conference on Management and Service Science.
Lo, M.-C. & Yang, M.-F. (2008). Imperfect reworking process consideration in integrated inventory model under permissible delay in payments. Mathematical Problems in Engineering, 2008.
Lu, L. (1995). A one-vendor multi-buyer integrated inventory model. European Journal of Operational Research, 81(2), 312-323.
Mirzapour Al-E-Hashem, S., Malekly, H., & Aryanezhad, M. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28-42.
Moussawi-Haidar, L., Dbouk, W., Jaber, M. Y., & Osman, I. H. (2014). Coordinating a three-level supply chain with delay in payments and a discounted interest rate. Computers & Industrial Engineering, 69, 29-42.
Munson, C. L., & Rosenblatt, M. J. (2001). Coordinating a three-level supply chain with quantity discounts. IIE Transactions, 33(5), 371-384.
Pal, B., Sana, S. S., & Chaudhuri, K. (2014). Three stage trade credit policy in a three-layer supply chain–a production-inventory model. International Journal of Systems Science, 45(9), 1844-1868.
Pan, J. C.-H., & Yang, J.-S. (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40(5), 1263-1273.
Porteus, E. L. (1986). Optimal lot sizing, process quality improvement and setup cost reduction. Operations research, 34(1), 137-144.
Reiman, M. I., & Wang, Q. (2012). A stochastic program based lower bound for assemble-to-order inventory systems. Operations Research Letters, 40(2), 89-95.
Sarkar, B., Gupta, H., Chaudhuri, K., & Goyal, S. K. (2014). An integrated inventory model with variable lead time, defective units and delay in payments. Applied Mathematics and Computation, 237, 650-658.
Schwaller, R. L. (1988). EOQ under inspection costs. Production and Inventory Management Journal, 29(3), 22.
Yang, M.-F., Kuo, J.-Y., Chen, W.-H., & Lin, Y. (2015). Integrated Supply Chain Cooperative Inventory Model with Payment Period Being Dependent on Purchasing Price under Defective Rate Condition. Mathematical Problems in Engineering, 2015.
Yang, M., & Tseng, W.-C. (2014). Three-echelon inventory model with permissible delay in payments under controllable lead time and backorder consideration. Mathematical Problems in Engineering, 2014.
Yang, P.-C., & Wee, H.-M. (2000). Economic ordering policy of deteriorated item for vendor and buyer: an integrated approach. Production Planning & Control, 11(5), 474-480.
Zhu, L, Zhang, J, & Zhang, J. (2008). An inventory model with limited storage capacity and shortages under permissible delay in payments. Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals-Logistics: The Emerging Frontiers of Transportation and Develipment in China, 1489-1495.
PSO Introduction Source: http://blog.xuite.net/metafun/life/58295146-%E7%B2%92%E5%AD%90%E7%BE%A4%E6%9C%80%E4%BD%B3%E5%8C%96%E6%B3%95(Particle+Swarm+Optimization)%E7%B0%A1%E4%BB%8B


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top