跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雲翔
研究生(外文):Chang, Yun-Hsiang
論文名稱:考慮淨現值下之模糊多目標造船專案管理問題
論文名稱(外文):Fuzzy Multi-objective Naval Architecture Project Management Problem with Present Value
指導教授:蘇健民蘇健民引用關係楊明峯楊明峯引用關係
指導教授(外文):Su, Chien MinYang, Ming Feng
口試委員:鍾玉科趙延丁
口試委員(外文):Chung, Yu-koChao, Yen-Ting
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:運輸科學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:37
中文關鍵詞:模糊理論造船現值專案管理
外文關鍵詞:FuzzyNaval architecturePresent ValueProject management
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在現在高度競爭的環境下,船舶製造商除了必須因應新船需求快速提升,在多艘新船製造並行下,限制的交船時間更是一大挑戰。面對這般變幻莫測的環境與多重限制,迫使造船公司決策者必須加強其造船製程效率。由這篇研究的建構模型所求出的最佳解,能夠協助決策者做出較適當的決策。近年來,經過金融風暴以及全球經濟蕭條之後,造船企業開始重視成本管理模擬以及成本控管。除此之外,在瞬息萬變的市場變化之下,匯率差也成為一個影響甚巨的因素,貨幣時間價值變得越來越重要;為了達成上述這些目標,學者們提出建議使用專案管理方法去達到這些要求。在此篇研究中,我們應用了模糊理論模型和現值成本法的概念來解決造船專案管理問題。此模糊理論模型目標是最小化總專案成本、總專案時間、以及趕工成本。除此之外,我們應用符號距離法去轉化模糊數,讓它轉成兩個極值,然後解模糊化,進而算出數值。另外,這篇論文會加入現實參數進入模型,來解決模糊多目標造船專案管理問題。這些最佳解將更貼近實際的情況。
In the highly competitive environment, shipbuilding enterprises have to cope with the rapidly increase demand of new ship, and the limited delivery time is a great challenge to naval architecture enterprises. Therefore, decision makers of naval architecture corporations are forced to reinforce their shipbuilding procedure. In this study, the proposed model is utilized to figure out optimal solution to help decision makers making decisions. In recent years, after global financial crisis and economic depression, naval architecture enterprises find it is significant to step up cost management practice, and improve the ability of cost control. Besides, exchange-rate difference is also a fatal influence factor in this constantly changing market; thus “time value of money”issue becomes more and more important. In order to achieve these goals, researchers introduce “Project Management” to meet the requirement. In this paper, a fuzzy model is established and the Net Present Value (NPV) method is applied for the multi-objective naval architecture project management problem. The fuzzy model tries to minimize total project cost, total completion time and total crashing cost in the same time. Besides, the signed distance method is utilized to the proposed model to transform fuzzy numbers into crisp values and a defuzzification model will be provided in this paper. Moreover, this paper will present an interactive solution procedure to get the preferred satisfactory solution for the multi-objective naval architecture project management. The solution in this paper are closer to approach the reality of the world.
Contents
誌 謝 I
Abstract II
中文摘要 III
Contents IV
List of figure VI
List of table VII
I. INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 2
1.3 Research Methods 2
1.3.1 Fuzzy Theory 2
1.3.2 Application of Fuzzy Theory 2
1.3.3 Fuzzy Sets 3
1.3.4 Fuzzy Numbers 3
1.3.5 Defuzzification 5
1.3.6 Project Management 5
1.3.7 Net Present Value Method 6
1.4 Research Framework 7
1.5 Research Process 9
II. LITERATURE REVIEW 11
2.1 Fuzzy Application 11
2.2 Multi-Objective Decision Making 12
2.3 Block Manufacturing Process 13
2.4 Project Management 13
2.5 Net present value method 14
III. MODEL DEVELOPMENT 17
3.1 Parameters and Assumption 17
3.1.1 Fuzzy Parameters: 17
3.1.2 Defuzzification Parameters: 18
3.1.3 Assumptions 19
3.2 Fuzzy model: 20
3.2.1 Defuzzification objectives: 20
3.2.2 Defuzzification constraints: 22
3.2.3 Defuzzification membership functions: 23
3.2.4 Modifications of the fuzzy model 24
3.3 Solution procedure 25
IV. NUMERICAL EXAMPLE 26
4.1 Naval Architecture Related Data 26
4.2 Defuzzification 27
4.3 Net Present Value Analysis 32
V. Conclusions and Recommendations 33
5.1 Conclusions 33
5.2 Recommendation 33
Conference 34

Bellman, R.E. and L.A. Zadeh, "DECISION-MAKING IN A FUZZY ENVIRONMENT," Management Science, vol. 17, (1970), P.141-P.164.

Archibald, R.B., The Implementation of Project Management: The Professional's Handbook, Massachusette: Addison-Wesley 178 (1981).

Chanas, S., Kamburowsi, J., The use of fuzzy variable in PERT, Fuzzy Sets Syst. 5, (1981) P.11–P.19.

Cleland, D.I., W.R. King, System Analysis and Project Management. 3rd ed, New York: Mcgraw-Hill College (1983).

DePorter, E.L. and K.P. Ellis (1990), "Optimization of project networks with goal programming and fuzzy linear programming," Computers and Industrial Engineering, vol. 19, no. 1-4, (1990), P.500-P.504.

Chang, I.S., Tsujimuta, Y., Gen, M., Tozawa, T., (1995) An efficient approach for large project planning based onfuzzy Delphi method, Fuzzy Sets Syst. 76 (1995) P.277-P.288.

Mon D.L., Cheng C.H., Lu H.C. (1995) "Application of fuzzy distributions on project management," Fuzzy Sets and Systems, Volume 73, Issue 2, 28 July 1995, P.227-P.234.

Munns, A.K., B.F. Bjeirmi, The role of project management in achieving project success, International Journal of Project Management 14 (1996) P.81-P.87.

Wang, H.F. and C.C. Fu, "Fuzzy resource allocations in project management," International Journal of Operations and Quantitative Management, vol. 4, 1998, P.187-P.197.

Fleischer M., Kohler R., Lamb T., Bongiorni H.B., Marine supply chain management, Journal of Ship Production 15 (1999) P.233-P.252.

Arikan, F., Z. Gungor, An application of fuzzy goal programming to a multiobjective project network problem, Fuzzy Sets and Systems 119 (2001) P.49-P.85.

Wang. Reay-Chen, Liang. Tien-Fu, Application of multiple fuzzy goals programming to project management decisions, International Journal of Industrial Engineering: Theory Applications and Practice 13 (2006) P.219-P.228.

Bert De Reyck, Zeger Degraeve, Roger Vandenborre. (2008) "Project options valuation with net present value and decision tree analysis," Volume 184, Issue 1, 1 January 2008, P.341–P.355

Hu, C.F., Shen, Y.L. and Li, S.Y., (2009) "An interactive satisficing method based on alternative tolerance for fuzzy multiple objective optimization," Applied Mathematical Modelling 33(2009) P.1886-P.1893.

Dlugokecki Victoria, Fanguy Dennis, Hepinstall Lisa, Tilstrom David, Transforming the shipbuilding and ship repair project environment, Journal of Ship Production 26 (2010) P.265-P.272.

Tien-Fu Liang, (2010) "Applying fuzzy goal programming to project management decisions with multiple goals in uncertain environments," Expert Systems with Applications 37 (2010) P.8499-P.8507.

Yang M.F. (2010) "Supply Chain Integrated Inventory Model with Present Value and Dependent Crashing Cost is Polynomial," Mathematical and Computer Modelling, Vol.51 (2010), No. 5, P.802-P.809.

Liang, T.F, "Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains," Information Sciences 181(2011) P.842-P.854

Wang M.J. and Yang M.F. (2011) "Application of signed distances method to integrated linear programming for fuzzy multi-objective project management," International Journal of Innovative Computing Information and Control, Vol.6 (2011), No. 11, P.5015-P.5034.

Werner Wetekamp. (2011) "Net Present Value (NPV) as a tool supporting effective project management," International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS'20112, 6072902, P.898-P.900

Liang, T.F., Huang, T.S., Yang, M.F. (2012) "Application of fuzzy mathematical programming to imprecise project management decisions. ," Quality and Quantity, Vol. 46, No. 5,P.1451-P.1470.

Yang, M.F. and Lin Y., (2013) "Applying fuzzy multi-objective linear programming to project management decisions with the interactive two-phase method," Computers and Industrial Engineering, Volume 66, Issue 4, 2013, P.1061-P.1069

Appadoo Srimantoorao S. (2014) "Possibilistic Fuzzy Net Present Value Model and Application," Mathematical Problems in Engineering, Volume 2014, Article ID 865968 P.1-P.12

Chiu Chui-Yu, Lin Yi, and Yang, M.F. (2014) "Applying Fuzzy Multi-objective Integrated Logistics Model to Green Supply Chain Problems," Journal of Applied Mathematics Volume 2014, Article ID 767095, 12 pages

Jaehun Parka, Dongha Leeb, Joe Zhu. (2014) "An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company," International Journal of Production Economics, Volume 156, October 2014, P.214–P.222

Zhou J., Yang F., Wang K. (2014) "Multi-objective optimization in uncertain random environments," Fuzzy Optimization and Decision Making, 2014, Volume 13, Issue 4, P.397–P.413.

Anandhi Govindarajan. (2015) "A soft computing framework to evaluate the efficacy of software project management," International Conference on Intelligent Systems and Control, ISCO 2015, P.1-P.6

M. Duran Toksarı, Yasemin Bilim (2015) "Interactive Fuzzy Goal Programming Based on Jacobian Matrix to Solve Decentralized Bi-level Multi-objective Fractional Programming Problems," International Journal of Fuzzy Systems, 2015, Volume 17, Issue 4, P.499–P.508.

Yang, M.F., Lo, M.C. and Chen, W.H. (2015) "Optimal Strategy for the Three-echelon Inventory System with Defective Product, Rework and Fuzzy Demand under Credit Period," Engineering Letters, Vol.23(2015), No.4, P.312-P.317.

Jiang W.b., Chai H.Q. (2015) "A Risk Management Methodology for R&D Project Risk Based on AHP and Fuzzy," Industrial Engineering and Engineering Management (IEEM), 2015, P.320-P.324

Zhang Q., Tan W., Sun Y. (2015) "Parallel Computing Method for Complex Emergency Systems Based on Multi-Objective Decision-Making with Analytic Hierarchy Process," International Conference on Computer Supported Cooperative Work in Design (CSCWD), P.570-P.575.

Houssem Felfel, Omar Ayadi and Faouzi Masmoudi. (2016) "A decision-making approach for a multi-objective multisite supply network planning problem," International Journal of Computer Integrated Manufacturing, Vol. 29, No. 7, P.754–P.767


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top