跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張維倫
研究生(外文):Chang, Wei-Lun
論文名稱:台灣東北沿岸海域維繫鞭毛蟲的宿命─微生物循環圈中碳傳遞的中繼或是終點?
論文名稱(外文):The fate of nanoflagellates in northeast coastal waters of Taiwan – a relay or the end of carbon flux in the microbial loop
指導教授:蔡安益
指導教授(外文):Tsai, An-Yi
口試委員:陳仲吉龔國慶蔣國平
口試日期:2016-06-01
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:26
中文關鍵詞:色素型微細鞭毛蟲異營性微細鞭毛蟲小型浮游植物攝食率
外文關鍵詞:Pigmented nanoflagellatesHeterotrophic nanoflagellatesMicrozooplankton grazing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在海洋微生物中的微細鞭毛蟲(Nanoflagellates),主要攝食Pico級生物而將能量往上傳遞。微細鞭毛蟲族群可分為色素型(自營性與混營性)及異營性兩類,然而對於微細鞭毛蟲本身成長率與被攝食率之變化並未有完整數據。本研究想藉由培養實驗真正了解微細鞭毛蟲在台灣東北沿岸海域能量傳遞的過程。本實驗於 2014 年9月至2015年8月,每月於海洋大學水生動物實驗中心附近海域採取表層水,帶回實驗室使用分割過濾法(不過濾培養組及過濾10 μm 濾膜的培養組),每次實驗在室外控溫培養箱進行為期2 天的培養,量測微細鞭毛蟲成長率及被攝食速率。由實驗結果可以發現色素型與異營性微細鞭毛蟲族群,其原始成長率變化在0.05 〜 1.21 d-1與0.17 〜 1.13 d-1之間而高值都在夏季。而纖毛蟲之攝食率在2015年6月發現最高可控制異營性微細鞭毛蟲約60%的生產量,在其餘月份攝食壓對微細鞭毛蟲生產的影響皆在0- 40%之間變動。本研究另外可發現在5月至10月期間纖毛蟲族群可測量到對細菌的攝食速率約在0.08 d-1- 0.2 d-1。另外當纖毛蟲對微細鞭毛蟲族群攝食壓越強時,在不過濾原水培養組中的藍綠細菌數量會明顯增加,而呈現瀑布效應(trophic cascade)的攝食情況。綜合本研究所得結果可了解到在本研究貧營養海域微細鞭毛蟲在11月至4月 (< 25℃),其生產量是無法傳遞至纖毛蟲等之上一食物階層。而在5月至10月(> 25℃),其能量傳遞僅佔微細鞭毛蟲20-30%之生產量。
It is clear from many studies that grazing by pigmented and heterotrophic nanoflagellates can control bacterial and Synechococcus spp. biomass by removing a substantial fraction of bacterial and Synechococcus spp. production in the coastal water of northeastern Taiwan. Little is known about the factors controlling variations in nanoflagellate growth and grazing in oceanic environments. In this study, the size-fractionation experiments (unfiltered and 10 μm filtered treatments) were performed to measure nanoflagellate growth rates, microzooplankton grazing and its effects on their role within the microbial food web. In this study, seawater samples to measure short-term (2 days) growth and grazing experiments were collected from surface waters monthly from September 2014 to August 2015. In the present study, we found that there were the clear seasonal variations in gross growth rates of pigmented and heterotrophic nanoflagellate and with the higher values in summer. In these experiments, significant impact of microzooplankton grazing were detected in January and June 2015, accounted for 50% and 60% of pigmented and heterotrophic nanoflagellate production, respectively. Beside this, the grazing dynamics of bacteria on the western coast of the subtropical Pacific were significantly influenced by ciliates between May and October in some experiments. We also found evidence for the effect of trophic cascades was significant at situations which ciliates obviously grazing on nanoflagellates in unfiltered treatments.
目錄
摘要 I
Abstract II
目錄 III
表目錄 IV
圖目錄 V
前言 1
1-1微生物循環圈(Microbial loop)的重要性1
1-2 微細鞭毛蟲攝食重要性1
1-3台灣東北沿岸海域微細鞭毛蟲的研究2
1-4實驗目的2
二、材料與方法3
2-1研究區域及採樣3
2-2微細鞭毛蟲族群成長及攝食實驗3
2-3樣本計數3
2-4 成長率及被攝食率計算4
三、結果5
3-1採樣期間水溫與微生物族群數量之季節性變化5
3-2微細鞭毛蟲族群之季節性成長率與被攝食率5
3-3培養期間纖毛蟲對細菌與藍綠細菌的攝食影響6
四、討論7
4-1培養時間的考量7
4-2微細鞭毛蟲成長率變化7
4-3上階攝食者對微細鞭毛蟲之攝食影響8
五、結論 10
參考文獻 11








Almeida MA, Cunha MA, Alcântara F (2001) Loss of estuarine bacteria by viral infection and predation in microcosm conditions. Microb Ecol 42: 562- 571
Arenovski AL, Lim EL, Caron DA (1995) Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. J Plankton Res 17(4): 801- 820
Azam F, Fenchel T, Field JG, Meyer- Reil LA, Thingstad F (1983) The ecological role
of water column microbes in the sea. Mar Ecol Prog Ser 10: 257-263
Bernard C, Rassoulzadegan F (1990) Bacteria or microflagellates as a major food
source for marine ciliates: Possible implications for the microzooplankton. Mar
Ecol Prog Ser 64:147- 155
Berninger UG, Finlay BJ, Kuuppo-Leinikki P (1991) Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr 36: 139-147
Berninger UG, Caron DA, Sanders RW (1992) Mixotrophic algal in three ice-covered lakes of the Pocono mountains, U.S.A. Freshw Biol 28: 263- 272
Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231: 493- 494
Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49: 51- 57
Caron DA, Dam HG, Kremer P, Lessard EJ, Madin LP, Malone TC, Napp QJM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Res Ⅱ 42: 943- 972
Chan YF, Tasi AY, Chiang KP, Hsieh CH(2009) Pigmented Nanoflagellates Grazing on Synechococcus: Seasonal Variations and Effect of Flagellate Size in the Coastal Ecosystem of Subtropical Western Pacific. Microb Ecol 58:548- 557
Chase Z, Price NM (1997) Metabolic consequences of iron deficiency in heterotrophic marine protozoa. Limnol Oceanogr 42: 1673- 1684
Chen JY, Tasi AY, Gong GC, Chiang KP (2012) Grazing Pressure by Ciliates on the Nanoflagellate Community in a Subtropical Pelagic Continental Shelf Ecosystem: Small Ciliates ( of < 45 μm) are Major Consumers of the Nanoflagellate Community. Zool Stud 51(8): 1308- 1318
Chi LY, Tasi AY, Chiang KP(2009) Trophic coupling between Synechococcusand pigmented nanoflagellates in the coastal waters of Taiwan, western subtropical Pacific. Journal of Oceanography 65: 781- 789
Christaki U, Giannakourou A, Wambeke FV, Gregori G (2001) Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. J Plankton Res 23: 1297- 1310
Cleven EJ, Weisse T (2001) Seasonal succession and taxonspecific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat Microb Ecol 23: 147- 161
Cloern JE (1997) Effects of light intensity and temperature on cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates. J Phycol 13:389- 395
Finlay BJ, Clarke KJ (1999) Apparent global ubiguity of species in the protest genus Paraphysomonas. Protist 150: 419- 430
Gasol JM (1994) A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113: 291- 300
Gasol JM, Pedrós-Alió C, Vaqué D (2002) Regulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches. Van. Leeuwenhoek 81: 435- 452
Goldman JC, Caron DA (1995) Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res Ⅰ32: 899- 915
Fuhrman JA (1992) Bacterioplankton roles in cycling of organic matter: the microbial food web. Envirou Sci Pul Res 43: 361- 383
Hall JA, Barrett DP, James MR (1993) The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton size prey in a coastal marine environment. J Plankton Res 15: 1075- 1086
Havskum H, Riemann B (1996) Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus. Mar Ecol Prog Ser 137: 251- 263
Havskum H, Hansen AS (1997) Importance of pigmented and colourless nano-sized protists as grazers on nanoplankton in a phosphate-depleted Norwegian fjord and in enclosures. Aquat Microb Ecol 12(2):139- 151
Hitchman RB, Jones HLJ (2000) The role of mixotrophic protists in the population dynamics of the microbial food web in a small artificial pond. Freshw Biol 43: 231- 241
Hobson LA (1974) Effects of interactions of irradiance, daylength, and temperature on division rates of three species of marine unicellular algae. J Fish Res Board Can 31: 39- 395
Ichinotsuka D, Ueno H, Nakano S (2006) Relative importance of nanoflagellates and ciliates as consumers of bacteria in a coastal sea area dominated by oligotrichous Strombidium and Strobilidium. Aquat Microb Ecol 42: 139- 147
Li A, Stoecker DK, Coats DW, Adam EJ (1996) Ingestion of fluorescently labeled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquat Microb Ecol 10(2): 139- 147
Maranger R, Bird DF, Price NM (1998) Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria. Nature 396(6708):248- 251
Marshall W, Laybourn-Parry J (2002) The balance between photosynthesis and grazing in Antarctic mixotrophic cryptophytes during summer. Freshwater Biology 47(11):2060-2070
Massana R, Del Campo J, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660- 2669
McManus GB, Fuhrmann JA (1986) Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol Oceanogr 31(2): 420- 426
Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49: 1722- 1733
Moorthi S, Berninger UG (2006) Mixotrophic nanoplankton in coastal sediment in the western Baltic Sea. Aquat Microb Ecol 45:79- 87
Morgan KC, Kalff J (1997) Effect of light and temperature interactions on growth of Cryptomonas erosa (Crypto-phyceae). J Phycol 15: 127- 134
Nakano S, Ishii N, Manage PM, Kawabata Z (1998) Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol 16: 153- 161
Nygaard K, Tobiesen A (1993) Bacterivory in algae: A survival strategy during nutrient limitation. J Plankton Res 26(9): 1005- 1014
Pålsson C, Granéli W (2004) Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient. J Plankton Res 26(9):1005- 1014
Reckermann M, Veldhuis MJW (1997) Trophic interactions between picophytoplankton and micro-and nanozooplankton in the western Arabian Sea during the NE monsoon. Aquat Microb Ecol 12: 263- 273
Riemann B, Havskum H, Thingstad F, Bernard C (1995) The Role of Mixotrophy in Pelagic Environments. Molecular Ecology of Aquatic Microbes 38: 87- 114
Safi KA, Hall JA (1999) Mixotrophic and heterotrophic nanoflagellate grazing in the convergence zone east of New Zealand. Aquat Microb Ecol 20: 83- 93
Sanders RW, Porter KG, Bennett SJ, Debiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34(4): 673- 687
Sanders RW, Porter KG, Bennett SJ(1990) Heterotrophic, autotrophic, and mixotrophic nanoflagellates: Seasonal abundances and bacterivory in a eutrophic lake. Limnol Oceanogr 35(8): 1821- 1832
Sanders RW (1991) Mixotrophic Protists In Marine and Freshwater Ecosystems. J Protozool 38(1): 76-81
Saura A, Massana R, Boras JA, Forn I, Vila-Reixach G, Vaqué D (2011) Effect of viruses on marine stramenopile (MAST) communities in an oligotrophic coastal marine system. J Protozool 33: 1709- 1718
Sherr EB, Sherr BF, McManiel J (1991) Clearance rates of < 6 µm fluorescently labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Mar Ecol Prog Ser 69: 81-92
Sherr EB, Sherr BF (2) Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28(2): 223- 235
Sherr EB, Sherr BF (2001) Phagotrophy in aquatic microbial food webs. In: Newell S (Ed) Manual of Environmental Microbiology II. ASM Press, Washington, DC. 409- 418
Šolić M, Krstulović N (1994) Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar Ecol Prog Ser 114: 219- 235
Thompson PA, Guo M, Harrison PJ (1992) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplank.J Phycol 28: 481- 488
Tsai AY, Chiang KP, Chang J, Gong GC (2005) Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol Oceanogr 50(4):1221-231
Tsai AY, Chiang KP, Chan YF (2007) Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. J Plankton Res 29: 71- 79
Tsai AY , Chiang KP, Chang J (2008) Seasonal variations in trophic dynamics of nanoflagellates and picoplankton in coastal waters of the western subtropical Pacific Ocean. Aquat Microb Ecol 51:263-274
Tsai AY, Gong GC, Sanders RW, Chen WH, Chao CF, Chiang KP (2011) Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem. Aquat Microb Ecol 63: 9-18
Tsai AY, Gong GC, Sanders RW, Chang KP, Huang JK, Chan YF (2012) Viral lysis and nanoflagellate grazing as factors controlling diel variations of Synechococcus spp.summer abundance in coastal waters of Taiwan. Aquat Microb Ecol 66: 159- 167
Tsai AY, Gong GC, Hung J (2013) Seasonal variations of virus- and nanoflagellate-mediated mortality of heterotrophic bacteria in the coastal ecosystem of subtropical western Pacific. Biogeosci 10: 3055- 3065
Unrein F, Massana R, Alonso-Sáez L, Gasol JM (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52: 456- 469
Wright RG, Coffin RB (1984) Measuring microzooplankton grazing on planktonic marine bacterial production. Microb Ecol 10:137- 149
Weithoff G, Wacker A (2007) The mode of nutrition of mixotrophic flagellates determines the food quality for their consumers. Functional Ecology 21: 1092- 1098
Weinbauer MG, Dolan JR, Šimek K (2015) A population of giant tailed virus-like particles associated with heterotrophic flagellates in a lake-type reservoir. Aquat Microb Ecol 76: 111- 116
陳焜銘(2002)近岸及陸棚生態系中纖毛蟲對聚球藻捕食率的時空變異與其在生物碳循環中的重要性,國立臺灣海洋大學海洋生物研究所博士論文。
陳勁彣(2011) 體型大小相似之異營性微細鞭毛蟲對餌料細菌攝食率差異之研究,國立台灣海洋大學環境生物與漁業科學學系研究所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top