跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊凱元
研究生(外文):Chuang, Kai-Yuan
論文名稱:2014年夏季日本海彼得大帝灣與東海陸棚碳化學參數之分布特徵
論文名稱(外文):Distribution of carbon chemistry parameters in the Peter the Great Bay of the Japan (East) Sea and the East China Sea shelf in summer 2014
指導教授:周文臣
指導教授(外文):Chou, Wen-Chen
口試委員:許德惇龔國慶黃蔚人
口試委員(外文):Sheu, Der-DuenGong, Gwo-ChingHuang, Wei-Jen
口試日期:2016-06-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:東海彼得大帝灣邊緣海二氧化碳
外文關鍵詞:East China SeaPeter the Great Baymargin seacarbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
陸棚海域因旺盛的生物作用使其吸收二氧化碳的能力遠優於開放性大洋,故對全球碳循環扮演了關鍵性的角色。不同的陸棚會因所處環境不同而有不一樣的二氧化碳吸收能力,但目前全球陸棚海域碳化學參數的時空分布數據仍不充足,故若欲對全球陸棚海域碳循環有完整的了解,必須針對各別特性不同的陸棚系統分別進行調查。本研究利用台俄雙邊合作計畫的機會,於2014 年夏季對西北太平洋中的日本海彼得大帝灣與東海陸棚碳化學參數的分布特徵進行了同步調查,其中彼得大帝灣部分過去尚無相關數據發表,本研究為首度在該海域進行的碳化學調查。研究結果顯示,2014年夏季東海陸棚為大氣二氧化碳的匯,吸收量約為每天18480噸的二氧化碳;彼得大帝灣則為大氣二氧化碳的源,釋放量約為每天26噸的二氧化碳。此種分布型態與開放大洋中緯度愈高愈傾向為大氣二氧化碳碳匯之傳統觀點有所不同,推測造成此種差異的原因為,注入東海河流的逕流量遠大於彼得大帝灣,使得輸入東海陸棚營養鹽的通量亦遠較彼得大帝灣為高,因此造就了東海陸棚非常高的生物生產力,使得生物生產作用成為主導東海表水二氧化碳分壓變化的控制因子,因此即使在夏季高溫的影響下,東海陸棚依舊可維持大氣二氧化碳匯的狀態。反之,彼得大帝灣由於缺乏河流所帶來的營養鹽,無法支持高的生物生產力,故其表水二氧化碳分壓的變化主要受溫度所控制,因此在夏季高溫的影響下,形成大氣二氧化碳的源。此外,將本研究所得結果與其它緯度相近之陸棚海域進行比較後可以發現,夏季時溫帶陸棚海域碳源、碳匯的分布情形與河流的影響及洋流的型態密切相關:有大河注入或冷流通過的海域,傾向為大氣二氧化碳的匯;無大河注入或有暖流通過的海域,則傾向為大氣二氧化碳的源。
Continental shelves are active sites of air-sea CO2 exchange and represent an important component to the global carbon budget. In this study, we investigated the CO2 system and pertinent hydrographic parameters in two distinct continental shelf systems in the Northwest Pacific in summer 2014: the East China Sea shelf (ECSS) and the Peter the Great Bay (PGB) of the Japan/East Sea. The results show that the PGB acted as a source of atmospheric CO2, while the ECSS was a sink. We suggest that the observed divergent behaviors in terms of CO2 absorption between the PGB and the ECSS may be associated with their difference in receiving river runoff. Under the influence of the Yangtze River, the nutrient discharge into the ECSS is much higher than that into the PGB, where only a few small rivers empty into. The high nutrient discharge into the ECSS may stimulate high biological production, which may drawdown CO2 and thereby driving the ECSS to act as a CO2 sink despite high temperature in summer. On the contrary, the temperature effect may dominate over the effect of biological production in the PGB due to the limited nutrient discharge, and thus turn the PGB to be a source of atmospheric CO2 during the warm summer season. The comparison between the present study and other shelf systems within the similar latitudinal zone demonstrates that whether the temperate shelf acting as a source or a sink of atmospheric CO2 is largely controlled by the influence of river discharge and circulation pattern. For the shelf system impacted by large river discharge or cold current, it is inclined to be a source of atmospheric CO2, meanwhile for that without the influence of large river or that affected by warm current, it tends to act as a sink.
摘要 I
目錄 III
圖目錄 V
表目錄 VI
一、緒論 1
1.1 研究背景 1
1.2 陸棚簡介 2
1.3 文獻回顧 2
1.4 研究目的 3
二、材料與方法 5
2.1 研究區域簡介 5
2.1.1 彼得大帝灣的地理環境 5
2.1.2 東海的地理環境 6
2.2採樣位置與時間 7
2.3採樣方法 7
2.3.1 水文資料收集 7
2.3.2 碳化學參數樣品收集 7
2.3.3 硝酸鹽樣品收集 7
2.4分析方法 8
2.4.1 海水中酸鹼值(pH)測定 8
2.4.2 溶解態無機碳(DIC)測定 9
2.4.3 總鹼度(TA)測定 10
2.4.4 海水中二氧化碳分壓( pCO2 )之計算 11
2.4.5 海-氣界面二氧化碳通量之計算 11
2.4.6 淡海水混合TA、DIC理論混合線之計算 12
2.4.7 溫度標準化的pCO2計算 13
三、結果 14
3.1 彼得大帝灣與東海表水溫、鹽之空間分布 14
3.1.1 彼得大帝灣表水溫、鹽之空間分布 14
3.1.2 東海表水溫、鹽之空間分布 14
3.1.3 彼得大帝灣與東海表水溫、鹽分布之差異 15
3.2 彼得大帝灣與東海表水碳化學參數之空間分布 15
3.2.1 表水酸鹼值(pH)之空間分布 15
3.2.1.1 彼得大帝灣pH值之空間分布 15
3.2.1.2 東海pH值之空間分布 15
3.2.1.3 彼得大帝灣與東海表水pH值之分布差異 16
3.2.2 總鹼度(TA)之空間分布 16
3.2.2.1 彼得大帝灣TA之空間分布 16
3.2.2.2 東海表水TA之空間分布 16
3.2.2.3 彼得大帝灣與東海表水TA之分布差異 17
3.2.3 表水溶解態無機碳(DIC)之空間分布 17
3.2.3.1 彼得大帝灣DIC之空間分布 17
3.2.3.2 東海DIC之空間分布 17
3.2.3.3 彼得大帝灣與東海表水DIC之分布差異 18
3.2.4 表水二氧化碳分壓(pCO2)之空間分布 18
3.2.4.1 彼得大帝灣pCO2之空間分布 18
3.2.4.2 東海pCO2之空間分布 18
3.2.4.3 彼得大帝灣與東海表水pCO2之分布差異 19
3.2.5 海氣二氧化碳交換通量之空間分布 19
四、討論 21
4.1彼得大帝灣與東海陸棚pCO2控制因子探討 21
4.2彼得大帝灣與其他溫帶陸棚海域碳源、碳匯之比較 22
五、結論 24
參考文獻 25

圖1.1 溫室效應示意圖 32
圖1.2 過去40萬年來大氣二氧化碳分壓(pCO2)隨時間的變化圖 32
圖1.3 1958 ~ 2015年間大氣pCO2隨時間變化圖 33
圖1.4 碳在自然界中循環的示意圖 33
圖1.5 海水碳源(source)與碳匯(sink)的示意圖 34
圖1.6 陸棚的海底地形圖 34
圖1.7 八月全球海氣CO2分壓差分布圖 35
圖1.8 全球陸棚海域海氣CO2年平均通量分布圖 35
圖1.9 日本海彼得大帝灣與東海的地理位置 36
圖2.1 彼得大帝灣分區地形圖 36
圖2.2 彼得大帝灣內的海流 37
圖2.3 東海分區地形圖 37
圖2.4 東海夏、冬季海流示意圖 38
圖2.5 彼得大帝灣與東海採樣位置圖 38
圖3.1 彼得大帝灣與東海表水溫度(℃)分布圖 39
圖3.2 彼得大帝灣與東海表水鹽度(psu)分布圖 40
圖3.3 彼得大帝灣與東海表水pH分布圖 41
圖3.4 彼得大帝灣與東海表水TA (μmol/kg)分布圖 42
圖3.5 彼得大帝灣與東海表水DIC (μmol/kg)分布圖 43
圖3.6 彼得大帝灣與東海表水pCO2 (μatm)分布圖 44
圖3.7 彼得大帝灣跟東海陸棚表水鹽度跟TA之間的關係 45
圖3.8 彼得大帝灣跟東海陸棚表水鹽度跟DIC之間的關係 45
圖3.9 彼得大帝灣跟東海陸棚表水DIC跟pH之間的關係 46
圖4.1 彼得大帝灣與東海陸棚表水溫度與pCO2的關係圖 46
圖4.2 彼得大帝灣與東海陸棚表水鹽度與溫度標準化的pCO2關係圖 47
圖4.3 彼得大帝灣與東海陸棚表水鹽度與DIC的關係圖 47
圖4.4 彼得大帝灣與東海陸棚表水鹽度與NO3-的關係圖 48
圖4.5 彼得大帝灣與東海陸棚表水鹽度與∆DIC的關係圖 48
圖4.6 彼得大帝灣與東海陸棚表水鹽度與∆NO3- 49
圖4.7 彼得大帝灣與東海陸棚∆DIC與pCO2 at 25℃的關係圖 49
圖4.8 彼得大帝灣與東海陸棚∆NO3-與pCO2 at 25℃的關係圖 50
表1.1 開放大洋和陸棚間海氣CO2交換通量、面積與單位面積吸收能力比較 51
表1.2 西北太平洋陸棚海域夏季碳源、碳匯分布表 51
表1.3 彼得大帝灣(PGB)跟東海(ECS)地理環境之比較 52
表2.1 彼得大帝灣淡水端與海水端的端成分 52
表2.2 東海淡水端與海水端的端成分 53
表3.1 彼得大帝灣跟東海各參數平均值間的差異性比較 53
表3.2 不同經驗公式所計算出來的彼得大帝灣海氣CO2交換通量 54
表3.3 不同經驗公式所計算出來的東海海氣CO2交換通量 54
表3.4 彼得大帝灣的各風速經驗公式間統計上的差異性比較(α = 0.05) 55
表3.5 東海的各風速經驗公式間統計上的差異性比較(α = 0.05) 55
表4.1 彼得大帝灣與其他緯度相近之溫帶陸棚海域碳源、碳匯分布情形與環境差異之比較 56
[中文部分]
吳詠翰(2012). 2009年春、夏兩季東海陸棚海水碳酸鹽飽和度之分布特徵, 國立臺灣海洋大學, 基隆市, p. 49
蔡儀慧(2013). 秋季時東海陸棚是大氣二氧化碳的「源」還是「匯」?, 國立臺灣海洋大學, 基隆市, p. 48
徐榮蔚(2015). 石灰石加速風化法單、雙槽反應器吸收二氧化碳效能之評估及其排放液對海水碳化學特性之影響, 國立臺灣海洋大學, 基隆市, p. 43

[英文部分]
Bates, N.R., A. F. Michaels, and A. H. Knap (1996). Seasonal and inter-annual variability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Research Part II: Topical Studies in Oceanography 43(2–3), 347-383.
Beardsley, R.C., R. Limeburner, H. Yu, and G. A. Cannon (1985). Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4(1–2): 57-76.
Borges, A.V., L. S. Schiettecatte, G. Abril, B. Delille, F. Gazeau (2006). Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70, 375-387.
Cai, W. J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration. Annual Review of Marine Science 3, 123-145.
Cai, W. J., X. P. Hu, W. J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W. C. Chou, W. D. Zhai, J. T. Hollibaugh, Y. C. Wang, P. S. Zhao, X. H. Guo, K. Gundersen, M. H. Dai and G. C. Gong (2011). Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4 (11), 766-770.
Canadell, J. G., C. L. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104.
Chen, J. Y. , D. J. Li, B. L. Chen, F. X. Hu, H. F. Zhu, and C. Z. Liu (1999). The processes of dynamic sedimentation in the Changjiang Estuary. Journal of Sea Research 41(1–2), 129–140.
Chen, C. S., J. R. Zhu, R. C. Beardsley, P. J. S. Franks (2003). Physical–biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters 30(10), 1515.
Chen, C. T. A., A. Andreev, K. R. Kim and M. Yamamoto (2004). Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. Journal of Oceanography 60, 17-44.
Chen, C. S., P. F. Xue, P. X. Ding, R. C. Beardsley, Q. C. Xu, X. M. Mao, G. P. Gao, J. H. Qi, C. Y. Li, H. C. Lin, G. Cowles, M. C. Shi (2008). Physical mechanisms for the offshore detachment of the Changjiang diluted water in the East China Sea. Journal of Geophysical Research, 113.
Chen, C. T. A. (2009). Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems 78, 394–410.
Chen, C. T. A. and A. V. Borges (2009). Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography 56(8–10): 578-590.
Chou, W. C., G. C. Gong, D. D. Sheu, C. C. Hung, and T. F. Tseng. (2009). Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research 114.
Chou, W. C., G. C. Gong, W. J. Cai, and C. M. Tseng (2013). Seasonality of CO2 in coastal oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence from the Changjiang–East China Sea system. Biogeosciences 10, 3889–3899.
Clayton, T. D. and R. H. Byrne (1993). Spectrophotometric seawater pH measurements total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Research Part I: Oceanographic Research Papers 40(10), 2115-2129.
Dai, M. H., Z. M. Cao, X. H. Guo, W. D. Zhai, Z. Y. Liu, Z. Q. Yin, Y. P. Xu, J. P. Gan, J. Y. Hu, and C. J. Du (2013). Why are some marginal seas sources of atmospheric CO2. Geophysical Research Letters 40, 2154-2158.
Dickson, A. G. (1981). An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research 28A, 609–623.
Dickson, A.G. and F. J. Millero (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research 34, 1733–1743.
Dickson, A. G. and C. Goyet (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2, Oak Ridge National Lab., USA.
Dickson, A.G., C. L. Sabine, and J. R. Christian (Editors) (2007). Guide to best practices for ocean CO2 measurements. PICES Special Publication. North Pacific Marine Science Organization.
DOE (1994), Handbook of method for the analysis of the various parameters of the carbon dioxide system in seawater, In: Dickson, A.G., C. Goyet (eds), U.S. Department of Energy CO2 science Team Report, version 2, unpublished manuscript.
Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101, 4115-4128.
Evans, W., B. Hales, and P. G. Strutton (2011). Seasonal cycle of surface ocean pCO2 on the Oregon shelf. Journal of Geophysical Research 116, C05012.
Ge, J. Z., C. S. Chen, J. H. Qi, P. X. Ding, and R. C. Beardsley (2012). A dike–groyne algorithm in a terrain-following coordinate ocean model (FVCOM): development, validation and application. Ocean Model 47, 26–40.
Ge, J. Z., P. X. Ding, C. S. Chen, S. Hu, G. Fu, and L. Y. Wu (2013). An integrated East China Sea–Changjiang Estuary model system with aim at resolving multi-scale regional–shelf–estuarine dynamics. Ocean Dynamics 63, 881–900.
Gong, G. C., Y. L. Chen, and K. K. Liu (1996). Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics
Continental Shelf Research 16(12), 1561-1590.
Gong, G. C., Y. H. Wen, B. W. Wang, G. J. Liu (2003). Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research II 50, 1219–1236.
Gong, G. C., J. Chang, K. P. Chiang, T. M. Hsiung, C. C. Hung, S. W. Duan, and L. A. Codispoti (2006). Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the Three Gorges Dam? Geophysical Research Letters 33, L07610.
Gran, Gunnar (1952). Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661-671.
Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, P. Hill (2006). Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophysical Research Letters, 33(16), L16611.
Intergovernmental Panel on Climate Change (IPCC) (2001). Climate Change 2001 IPCC Third Assessment Report, IPCC Secretariat, Geneva.
International Hydrographic Organization (IHO) (2002). Limits of Oceans and Seas.
International Hydrographic Organization.
Isobe, A., and T. Matsuno (2008). Long-distance nutrient-transport process in the Changjiang river plume on the East China Sea shelf in summer. Journal of Geophysical Research: Oceans 113.
Jinho, A. and E. J. Brook (2012). Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nature Communications 5, 3723.
Le Quéré, C., M. R. Raupach, J. G. Canadell, G. Marland, L. Bopp, P. Ciais, T. J. Conway, S. C. Doney, R. A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R. A. Houghton, J. I. House, C. Huntingford, P. E. Levy, M. R. Lomas, J. Majkut, N. Metzl, J. P. Ometto, G. P. Peters, I. C. Prentice, J. T. Randerson, S. W. Running, J. L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G. R. van der Werf ,and F. I. Woodward (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2, 831-836.
Lee, H. J. and S. Y. Chao (2003). A climatological description of circulation in and around the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography 50(6–7), 1065-1084.
Lewis, E. and D. W. R. Wallace (1998). Program developed for CO2 system calculations. ORNL/CDIAC-105.
Li, G. X., X. B. Han, S. H. Yue, G. Y. Wen, R. M. Yang, and T. M. Kusky (2006). Monthly variations of water masses in the East China Seas. Cont Shelf Res 26, 1954–1970.
Liu, K.K., G. C. Gong, S. W. Lin, C. Y. Yang, C. L. Wei, S. C. Pai, and C. K. Wu (1992). The year-round upwelling at the shelf break near the northern tip of Taiwan as evidenced by chemical hydrography. Terrestrial, Atmospheric and Oceanic Sciences, 3: 243-276.
Lobanov, V.B., P. Ya Tishcheno, A. F. Sergeev et al. (2009). Seasonal hypoxia and ventilation waters in Amursky Bay. Nature Without Borders, 171-172.
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973). Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnology and Oceanography 18, 897-907.
Meure, C. M., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins (2006), Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophysical Research Letters 33, L04810.
Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, and R. C. Upstill-Godd (2000). In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles 14(1), 373-387.
Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pe´pin, C. Ritz, E. Saltzmank, and M. Stievenard, (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
Qu, B. X., J. M. Song, H. M. Yuan, X. G. Li, and N. Li (2014). Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012. Continental Shelf Research 80, 8–19.
Sasaki, H., E. Siswanto, K. Nishiuchi, K. Tanaka, T. Hasegawa, and J. Ishizaka (2008). Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season. Geophysical Research Letters 35(4), L04604.
Shan, X. J., X. S. Jin, Z. P. Zhou, and F. Q. Dai (2011). Fish community diversity in the middle continental shelf of the East China Sea. Chinese Journal of Oceanology and Limnology 29, 1199-2208.
Shadwick, E. H., H. Thomas, A. Comeau, S. E. Craig, C. W. Hunt, and J. E. Salisbury (2010). Air-Sea CO2 fluxes on the Scotian Shelf: seasonal to multi-annual variability. Biogeosciences 7, 3851–3867.
Shaw, P.T. (1989). The intrusion of water masses into the sea southwest of Taiwan. Journal of Geophysical Research: Oceans 94 (C12), 18213-18226.
Siegenthaler, U., E. Monnin, K. Kawamura, R. Spahni, J. Schwander, B. Stauffer, T. F.
Stocker, J.-M. Barnola, and H. Fischer (2005). Supporting evidence from the
EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus, Ser. B 57, 51–57.
Signorini, S. R., A. Mannino, R. G. Najjar Jr., M. A. M. Friedrichs, W. J. Cai, J. Salisbury, Z. H. Wang, H. Thomas, and E. Shadwick (2013). Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. Journal of Geophysical Research: Oceans, Vol. 118, 5439–5460.
Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento, and R. Wanninkhof (2007). Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21(2), GB2015.
Takahashi, T., S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, Watson, A. Watson, D. C. E. Bakker, U. Schuster, N. Metzl, H. Y. Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T. S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C. S. Wong, B. Delille, N. R. Bates, and H. J. W. de Baar (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Research II : Topical Studies in Oceanography 56, 554-577.
Tao, Z., B. Y. Qin, Z. W. Li, and X. F. Yang (2012). Satellite observations of the partial pressure of carbon dioxide in the surface water of the Huanghai Sea and the Bohai Sea. Acta Oceanoogica Sinica 31(3), 67-73.
Talley, L.D., V. Lobanov, V. Ponomarev A. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser (2003). Deep convection and brine rejection in the Japan Sea. Geophysical Research Letters 30 (4), 1159.
Tong, Y. D., Y. Zhao, G. C. Zhen, J. Chi, X. H. Liu, Y. R. Lu, X. J. Wang, R. H. Yao, J. Y. Chen, and W. Zhang (2015). Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012). Scientific Reports 5, Article number: 16678.
Tsunogai, S. (2002). The western north Pacific playing a key role in global biogeochemical fluxes. Journal of Oceanography 58, 245– 257.
Turk, D., V. Malačič, M. D. DeGrandpre, and W. R. McGillis (2006). Carbon dioxide in European coastal waters. Estuarine. Coastal and Shelf Science 70, 375-387.
V.I. II’ichev Pacific Oceanological Institute (2011). A Case Study Report on Assessment of Eutrophication Status in Peter the Great Bay, Russia. V.I. II’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Russia.
Wang, F. S., Y. C. Wang, J. Zhang, H. Xu, and X.G. We (2007). Human impact on the historical change of CO2 degassing flux in River Changjiang. Geochemical Transactions 8(1): 7. DOI: 10.1186/1467-4866-8-7.
Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373-7382.
Wanninkhof, R. and W. R. McGillis (1999). A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters 26(13), 1889-1892.
Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal
gas. Marine Chemistry 2(3), 203-215.
Zeebe, R. E. and D. Wolf-Gladrow (2001). CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography 65, 329.
Zhai, W. D., M. H. Dai, B. S. Chen, X. H. Guo, Q. Li, S. L. Shang, C. Y. Zhang, W. J. Cai, and D. X. Wang. (2013). Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences 10, 7775–7791.
Zhai, W. D., J. F. Chen, H. Y. Jin, H. L. Li, J. W. Liu, X. Q. He, and Y. Bai (2014).
Spring carbonate chemistry dynamics of surface waters in the northern East China
Sea: Water mixing, biological uptake of CO2, and chemical buffering capacity.
Journal of Geophysical Research: Oceans 119, 5638–5653.
Zhang, J. and J. L. Su (2006). Nutrient dynamics of the China Sea: The Bohai Sea, Yellow Sea, East China Sea and South China Sea. In: A. R. Robinson and K. H. Brink (Eds.), The Sea: The Global Coastal Ocean Interdisciplinary Regional Studies and Syntheses. Part A, Panreginal Syntheses and the Coasts of North and South America and Asia 14, 637–671.
Zhu, J., C. Chen, P. Ding, C. Li, and H. Lin (2004). Does the Taiwan warm current exist in winter? Geophysical Research Letters 31(12), L12302.
Zvalinsky, V. I., A. P. Nedashkovsky, S. G. Sagalaev, P. Ya Tishchenko, and M. G. Shvetsova (2005). Nutrients and primary production in the estuary of the Razdolnaya River (Amursky Bay, Sea of Japan). Biologiya Morya, Vladivostok, 31 (2), 107-116.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top