(18.206.238.77) 您好!臺灣時間:2021/05/17 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李易陞
研究生(外文):Lee, Yi-Sheng
論文名稱:感測器整合與影像追蹤於四旋翼機之應用
論文名稱(外文):Sensor Integration and Image Tracking for Quadcopter Application
指導教授:莊季高
指導教授(外文):Juang, Jih-Gau
口試委員:江青瓚張文中莊季高
口試委員(外文):Chiang, Ching-TsanChang, Wen-ChungJuang, Jih-Gau
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:四旋翼機避障影像追蹤仿真模擬
外文關鍵詞:sensorMATLABquadcopterimage tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:686
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討四旋翼飛行載具動力學模型推導與模擬研究,並將感測元件應用於四旋翼飛行器上。研究中利用了感測器元件,使四旋翼機在不同的環境下,透過氣壓高度計與超音波感測元件來完成定高飛行,其他超音波感測元件則做為自主避障功能。另外,加裝 Pixy (CMUcam5)元件來做影像追蹤,透過Pixy (CMUcam5)攝影機取得物體顏色並回授到Arduino Mega控制板處理,得到的數據值可辨識追蹤物體面積,並計算其相對應之空間位置及與四旋翼機的距離。在空間位置與四旋翼機距離的部分,我們用C++演算法來實現旋翼機俯仰角、翻滾角的規則表,使其能自主的透過其規則表結合影像回授資料完成物體追蹤及平衡飛行運動。本研究也利用Matlab軟體寫入PD控制法,作為旋翼機閉迴路控制之模擬,以達到自主追蹤驗證需求。

關鍵字: Matlab、四旋翼機、影像追蹤、超聲波避障、模糊控制器、PID控制器。

This study focuses on quadcopter dynamic model, simulation, and sensor components using in rotary-wing aircraft. The research uses the sensor components to make the quadcopter utilize air pressure altimeter with the ultrasonic sensor components to accomplish altitude holding in different environments. Ultrasonic sensor components are used in autonomous obstacle avoidance. In addition, apply Pixy (CMUcam5) camera to implement image tracking that acquires objects’ color and then feedbacks to the Arduino Processing. Return data, which is the feedback of Arduino Processing, and track objects area corresponding to the spatial position and the distance from the quadcopter. As to the location in space and the distance from quadcopter, this study uses C++ programming to obtain the quadcopter’s pitch and roll angle of the rule table, combines images of feedback data tracking, and balances flight movement independently through their rules table. MATLAB software simulations for PID control of a quadcopter to meet independent verification tracking needs are presented.

Keywords: Quadcopter, Visual target tracking, Obstacle avoidance, Fuzzy controller, PID controller.

Abstract (Chinese)……………………………………………………………………I
Abstract (English)……………………………………………………………………II
Acknowledgement (Chinese)……………………………………………………III
Contents………………………………………………………………………...IV
List of Figures………………………………………………………………………VI
List of Table………………………………………………………………………..IX
Chapter 1: Introduction…………………………………………………………….1
1.1 Preface………………………………………………………………………..1
1.2 Research Motivations and Goal……………………………………………...1
1.3 Literature Review…………………………………………………………….2
1.4 Proposed Method……………………………………………………………..3
Chapter 2 : Quadcopter Machine System and Exercise Programs……………………5
2.1 Quadcopter System Architecture……………………………………………..5
2.2 Quadcopter Machine Hardware Description…………………………………7
2.2.1 APM2.6 Flight Control Board……………………………………….8
2.2.2 Mission Planner GCS…………………………………………………8
2.2.3 3DR Radio Telemetry…………………………………………………9
2.2.4 A2212 Brushless Motor……………………………………………….9
2.2.5 NEO- M8N (GPS)………………………………………………….. 10
2.3 System Description…………………………………………………………10
2.4 Dynamic Equation of the Quadcopter………………………………………14
Chapter 3 : Image Processing and Obstacle Avoidance…………………………….....18
3.1 Image Processing……………………………………………………………18
3.1.1 Pixy Camera…………………………………………………………18
3.1.2 Color Identification………………………………………………….19
3.1.3 RGB Color Space……………………………………………………19
3.1.4 Hue-Based Color Filtering Algorithm……………………………….20
3.1.5 Graphical Example of Two-Pass Algorithm…………………………21
3.2 Arduino Mega 2560…………………………………………………………24
3.3 Ultrasonic Sensor…………………………………………………………...25
3.4 Optical Flow Sensor………………………………………………………...26
3.5 Remote Controller…………………………………………………………..26
Chapter 4 : Control Scheme………………………………………………………….28
4.1 The Actual Object Tracking Control Sequences……………………..28
4.1.1 Direction Control and Function of Obstacle Avoidance……………29
4.1.2 Optical Flow Hover Control………………………………………..33
4.1.3 Image Tracking Control……………………………………………35
4.1.4 Quadcopter Detection and Target Tracking……………………….37
4.2 The Simulink Simulation of The Quadcopter………………………………38
4.2.1 Attitude Controller……………………………………………….......38
4.2.2 PD Controller………………………………………………………43
4.2.3 Fuzzy PD Controller………………………………………………….46
4.2.4 Displacement Controller……………………………………………49
Chapter 5 : Experiment Results………………………………………………………54
5.1 Simulation and Analysis…………………………………………………….54
5.1.1 Quadcopter System Simulation…………………………………….54
5.1.2 Main Quadcopter System…………………………………………..55
5.1.3 Quadcopter Attitude System………………………………………..56
5.1.4 The Displacement Controller of the Quadcopter…………………..61
5.1.5 PD Control Analysis………………………………………………..62
5.1.6 Fuzzy PD Control Analysis………………………………………...66
5.2 Tracking and Detecting Target……………………………………………...73
Chapter 6 : Conclusions and Future Prospect…………………………………............77
6.1 Conclusions………………………………………………………………77
6.2 Future Prospect…………………………………………………………….77
References………………………………………………………………..................79

[1] B. C. Kuo, Automatic Control Systems Ninth Edition, Wiley, 2010.
[2] C. L. Lee, Displacement Controller Design of Quadrotor, Master Thesis, Department of Aerospace Engineering, Tamkang University, 2014.
[3] Y. J. Li, Department of Aerospace Engineering, Master Thesis, Department of Aerospace Engineering, Tamkang University, 2014
[4] A. L. Salih , M. Moghavvemi, H. A. F. Mohamed and K. S. Gaeid, ”Flight PID Controller Design for a UAV Quadrotor” Scientific Research and Essays, vol. 5, no. 23, pp. 3660–3667, 2010.
[5] R. Dasgupta, and R. Mukherjee, Prof “A Novel Approach of Sensor Data Retrieving using a Quadcopter in Wireless Sensor Network Forming Concentric Circular Topology, ” Prof. Amitava Gupta Innovation Lab, Feb 17-19, 2015
[6] C. C. An, Developed a Wireless Remote Control and Multi-rotor Aerial Vehicle Systems Integration of Video Surveillance, Master thesis, Southern Taiwan University of Science and Technology, 2014.
[7] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-Time Indoor Autonomous Vehicle Test Environment,” IEEE Control System Magazine, vol. 28, no. 2, pp. 51-64, 2008.
[8] Chun-Bi Wang, Jim Ouyang, Base on Fuzzy PID to Design and Simulate the UAV Longitudinal Autopilot Flight Control System, Master thesis, Department of Avionics China Institute of Technology, 2008.
[9] C. D. Yang, The Implementation and Controlof quardrotor robot WITH VISUAL Target Tracking, Master Thesis, Electrical Engineering, Tatung University, 2013
[10] W. F. Phillips, MECHANICS OF FLIGHT, WILEY, 2004.
[11] http://www.crazepony.com/wiki/quadcopter-history.html
[12] P. Pounds, R. Mahony, P.Hynes, and J. Roberts, “Design of a Four-Rotor Aerial Robot,” Proc. Of Australasian Conference on Robotics and Automation, pp. 145-150, 2002.
[13] I.C. Dikmen, A. Arisoy, and H. Temeltas, “Attitude Control of a Quadrotor,” Proc. of Recent Advances in Space Technologies, Istanbul-Turkey, pp, 722-727, 2009.
[14] Y. J. Tai, Attitude Control of Quadrotor using Self-Tuning Fuzzy Control Method, Master Thesis, National Ilan University, 2013.
[15] Y. T. Hsu, Design and Implementation of Hierarchical Formation Control for Multiple Mobile Robots in Indoor Environment, Master Thesis, National Cheng Kung University, 2014
[16] Z. Chen Programmable remote control Quadcopter, Master Thesis, Department of Computer Science and Information Engineering, Nanhua University, 2013
[17] K. Y. Li, Attitude Control Algorithm Design – Application of Complementary Filter, Master Thesis, Department of Aerospace Engineering, Tamkang Universit, 2013
[18] J. G. Ziegler, and N. B. Nichols, “Optimum Settings for Automatic Controllers.” Transactions of the ASME, vol. 64, pp.759–768, 1942.
[19] R. H. Ash, ; G. H. Ash, "Numerical Computation of Root Loci Using the Newton-Raphson Technique, " IEEE Trans. Automatic Control, vol. 13, no. 5, pp. 10-15, 1968.
[20] H. Samet and M. Tamminen, "Efficient Component Labeling of Images of Arbitrary Dimension Represented by Linear Bintrees", IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 10, no. 4, pp.579-582, 1988.
[21] M. B. Dillencourt, H. Samet, and M. Tamminen, "A General Approach to Connected-component Labeling for Arbitrary Image Representations," Journal of the ACM, vol. 21, no. 5, pp. 779-787, 2010.
[22] Wikipedia, RGB color model, http://en.wikipedia.org/wiki/RGB_color_model

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top