跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝華育
研究生(外文):Hsieh, Hua-Yu
論文名稱:散裝航運市場現況及其船舶營運模式之分析
論文名稱(外文):The Analysis of Shipping Markets and Operating Models in the Bulk Shipping Sectors
指導教授:鍾政棋鍾政棋引用關係
指導教授(外文):Chung, Cheng-Chi
口試委員:韓子健鍾易詩李選士蘇育玲鍾政棋
口試委員(外文):Han, Tzeu-ChenChung, Yi-ShihLee, Hsuan-ShihSu, Yuh-LingChung, Cheng-Chi
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:航運管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:營運模式績效評估散裝航運市場資料包絡分析法
外文關鍵詞:Operating ModelsPerformance EvaluationBulk ShippingData Envelopment Analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:734
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:1
散裝航運近乎於完全競爭市場,現今全球散裝航運市場與運價低迷,貨物需求不如以往。本研究基於航運公司立場,針對散裝航運現況、散裝營運模式以及煤炭運輸業務實證分析等三大主軸進行探討。本研究透過聯合國貿易暨發展委員會(UNCTAD)、德國航運經濟與物流研究中心(ISL),及Clarkson研究機構等近年資料,分析散裝航運市場船噸供給、貨源需求與市場運價之現況。並以學理角度,針對散裝船舶營運模式分為論程傭船(V/C)、論時傭船(T/C)以及船舶租賃(B/C)三部分進行探討,藉以了解各營運模式於不同市場概況下之優劣勢。並藉由煤炭運輸實際案例進行實證分析,研究方法則採用資料包絡分析法(DEA)進行分析,基於無明確產出(WEO)模式,整合各項投入變數,計算印尼與澳洲共八個主要裝貨港之營運績效,探討於現行市場上,如何提升煤炭運輸業務營運績效。本文研究發現如下:

1. 散裝航運市場現況分析發現,現今貨量成長仍不及船噸成長,顯示船舶噸位供給過剩,整體航運景氣氛圍低迷,航運公司市場營運較為艱困。運價市場方面,近年來波動程度大,以大型船舶如海岬型及巴拿馬極限型最為嚴重,因此,於現今航運環境艱困下,船東更需掌握現今航運市場之船貨供需與運價市場,保有其競爭力。

2. 散裝航運營運模式分析不同的營運模式有不同的風險、成本與責任,對船東與傭船人而言,亦各有其優勢與劣勢,航運公司可依市場運價波動,於不同時期採取不同的營運模式。航運為風險管理高度相關之行業,於船東市場時,可洽談論程傭船契約,把握運價高漲時機,增加公司利潤。於傭船人市場時,可洽談論時傭船契約,以避免於市場氛圍不佳時,無法將船舶出租之持有成本。而論時傭船租期之長短與否,亦會影響船東利益,若還船點於運價上漲時,船東擁有更佳之談判優勢,此時船東可洽定單一航次論時傭船(Trip T/C),或是租期較短之論時傭船,以增加不同傭船契約之洽訂,藉以增加收入,相對而言,於運價下跌時,船東反居談判劣勢,此時船東可簽訂較長期論時傭船(Period T/C),此舉可將船舶營運成本移轉至傭船人手中。

3. 煤炭運輸業務實例分析結果發現,於受評港口中,以印尼港口效率值較澳洲更有效率,印尼四個港口中以D港為最高。為提升裝貨港績效,散裝航運A公司在選擇裝貨港時,可多選擇印尼的A港、B港與D港,而為尋求品質較佳之煤源,澳洲港口可選擇A港。而至澳洲之航程海上時間長,若至澳洲承載貨物,可減少單位燃料成本,船員亦可於放大洋期間進行船舶保養與維修工作。

Bulk shipping market is alomost competitive. Due to the drop of demand, the freight and hire are taking a downturn now. This study is based on the carrier’s position, focuses on three aspects in bulk shipping status, operation model and the empirical analysis of bulk coal transport business, etc. In order to analyze the current supply of ship tonnages, the demand of cargoes and the market freights statement in the bulk shipping market, we use the latest data from United Nations Conference on Trade and Development (UNCTAD), Institute of Shipping Economics and Logistics (ISL), and Clarkson Research Services. While focusing on bulk shipping markets, these operation models are divided into Voyage Charter (V/C), Time Charter (T/C) and Bareboat Charter (B/C) to discuss, in order to understand the advantages and disadvantages in different operation model of markets. We conduct empirical analysis by case study, and Data Envelopment Analysis (DEA) is the methodology of this study based on Without Explicit Outputs (WEO) model to integration of the various input variables. We discuss how the current market enhancing its coal transportation and operating performance by input variables from real case and real company, which from eight ports in Indonesia and Australia. In this study, result as follow:

1. The bulk shipping market situation analysis found that the current cargo volume growth is still slower than ship tonnages, which shows that ship tonnage supply are overflow. Due to the overall shipping markets are still in doldrums, shipping companies are in the hard time. In recent years, it’s volatility in freight market, especially to large vessels such as Capesize and Panamax are more serious. Therefore, in order to maintain their competitiveness under the hardship, Ship owners have to master cargo demand, shipping supply and freight market in recent days.

2. Bulk shipping business model analysis of different operating models have different risks, costs and responsibilities to ship owners and charterers, but they have their own advantages and disadvantages. According to the volatility of freights, shipping companies could respond to the market by operation model in different periods. Shipping industry are highly correlated with risk management. When there are owners’ market, the market freights are high, it’s better to be Voyage Charter (V/C) to enhance the profits. When there are charterers’ market, the market freights are low, so it’s better to be Time Charter (T/C) to avoid the cost which ships unable to lease in bad times.The length of the lease in time charter will also affect ship owner’s benefits, if the freight rise in redelivery point, the ship owner will have an advantage in negotiations. In order to increase revenue, ship owner could bargain Trip Time Charter, or Time Charter in a short term to increase the diversity of the contact. In the other hand, when tariffs goes down, it’s hard to negotiate for the ship owner, so bargaining a longer-term Period Time Charter is a good way to transfer the operating costs charterer.

3. In the case analysis, we found that Indonesian ports are more efficient than Australian port, especially the port D in Indonesia. In order to enhance the performance of loading, bulk shipping company A could select Indonesian Ports A, B and D to load more often. And for a better quality of coal source, Australian port A is selectable. If there are bulk cargos need to be loading from Australia, crews could do some maintenance and ship repairing during the voyage due to its long way, which also reduce the unit cost of bunker.

謝誌 I
摘要 II
ABSTRACT III
目錄 V
表目次 VII
圖目次 VIII

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 5
1.3 研究內容與方法 6
1.4 研究之限制 7
1.5 研究架構與流程 7

第二章 文獻回顧與評析 9
2.1 散裝航運市場特性 9
2.2 散裝航運營運模式特性 12
2.3 績效評估方法 13

第三章 散裝航運市場現況分析 19
3.1 散裝船噸供給分析 19
3.2 散裝貨源需求分析 24
3.3 散裝航運市場運價分析 28
3.3.1 波羅地海運價指數分析 28
3.3.2 散裝運輸價格分析 31
3.4 本章小結 36

第四章 散裝航運船舶營運模式 38
4.1 船噸聯盟營運模式分析 38
4.1.1船噸聯盟營運模式特性分析 38
4.1.2 船噸聯盟營運模式優劣勢分析 39
4.2 論程傭船營運模式分析 39
4.2.1 論程傭船營運模式特性分析 39
4.2.2 論程傭船營運模式優劣勢分析 42
4.3 論時傭船營運模式分析 45
4.3.1 論時傭船營運模式特性分析 45
4.3.2 論時傭船營運模式優劣勢分析 46
4.4 船舶租賃營運模式分析 47
4.4.1 船舶租賃營運模式特性分析 48
4.4.2 船舶租賃營運模式優劣勢分析 49
4.5 本章小結 49

第五章 煤炭運輸績效評估實例分析 51
5.1 績效評估之背景 51
5.2 無明確產出分析法(DEA-WEO)之起源 52
5.3無明確產出分析法(DEA-WEO)模式計算 52
5.4 評估變數之選取 54
5.5 煤炭運輸實例分析 54
5.6 營運成本與營運績效分析 56
5.7 本章小結 57

第六章 結論與建議 58
6.1結論 58
6.2建議 59
參考文獻 60
附件一、論程傭船GENCON 1994契約 64
附件二、論時傭船NYPE 1946契約 68
附件三、論時傭船NYPE 1993契約 72
1. 朱子昕(2008),散裝船舶大型化及市場總船噸之影響因素與未來趨勢分析,國立交通大學交通運輸研究所碩士論文。
2. 吳婕妤(2004),交通執法績效評估模型之建構,國立交通大學交通運輸研究所碩士論文。
3. 林宥勝(2007),散裝海岬型船市場及其運價指數趨勢之分析,國立臺灣海洋大學航運管理研究所碩士論文。
4. 柯明學(2012),2005-2009年亞洲地區主要貨櫃港口績效評估─資料包絡分析之應用,國立臺灣海洋大學航運管理研究所碩士論文。
5. 孫遜(2004),資料包絡分析法─理論與應用,臺北市:揚智文化事業股份有限公司。
6. 徐穎珍(2015),網絡資料包絡分析法應用於散裝航運公司之績效評估,國立臺灣海洋大學航運管理研究所博士論文。
7. 訊昌船舶經紀有限公司(2016),航運市場趨勢─散裝船數量統計,擷取日期2016/01/17 http://www.maxmart.com.tw/333373693924066225803626421218.html
8. 高強、黃旭男、Toshiyuki Sueyoshi (2003),管理績效評估:資料包絡分析法,臺北市:華泰文化事業有限公司。
9. 張珮宜(2009),散裝航運公司傭船營運競爭力之分析,國立臺灣海洋大學航運管理研究所碩士論文。
10. 張嘉珮(2008),論時傭船營運關鍵影響因素與傭船方案組合之分析,國立臺灣海洋大學航運管理研究所碩士論文。
11. 張簡嘉亮(2011),定期航商所屬專用碼頭經營績效評估之研究,國立臺灣海洋大學航運管理研究所碩士學位論文。
12. 許士軍(2000),走向創新時代的組織績效評估—績效評估,臺北市,天下文化。
13. 黃旭男(1993),資料包絡分析法使用程序之研究及其在非營利組織效率評估上之應用,國立交通大學管理科學研究所博士論文。
14. 劉佳讓(2013),全球金融危機對散裝航運市場船貨供需之影響,國立臺灣海洋大學航運管理研究所碩士論文。
15. 薄喬萍(2005),績效評估之資料包絡分析法,臺北市:五南圖書。
16. 鍾政棋(1997),最新論程傭船Gencon契約書之評論,中國海事商業專科學校學報,頁193~224。 
17. 鍾政棋(2004),我國散裝航運公司船舶設籍與營運績效之分析,國立交通大學交通運輸研究所博士論文。
18. 鍾政棋(2015),圖解航業經營概論,臺北市:複合文具印刷有限公司。
19. 鍾政棋、甘國亞、謝華育(2016),「散裝航運公司煤炭運輸業務營運績效之評估」,海空運論文研討會論文集(目錄),3月24~25日,高雄海洋科技大學,頁11。
20. Andersen, P. and Petersen, N. C. (1993), “A Procedure for Ranking Efficient Units in Data Envelopment Analysis,” Management Science, Vol. 39, Iss. 10, pp. 1261-1264.
21. Anderson, H. E. (2001), “Charter Party Symposium - Part II: “Subject to Details” and Charter Party Negotiations,” Tulane Maritime Law Journal, Vol. 26, Winter, pp. 61-70.
22. Anderson, H. E. (2006), “Shipbrokers’ Claims for Commission Revisited: A Comparison Between English and U.S. Law,” Tulane Maritime Law Journal, Vol. 30, No. 183, pp. 1-40.
23. Banker, R. D. and Thrall, R. M. (1992), “Estimation of Returns to Scale Using Data Envelopment Analysis,” European Journal of Operational Research, Vol. 62, No. 1, pp. 74-84.
24. Byrnes, P., Fare, R., and Grosskopf, S. (1984), “Measuring Productive Efficiency: an Application to Illinois Strip Mines,” Management Science, Vol. 30, Iss. 6, pp. 671-681.
25. Chang, Y. T. and Chang, H. B. (1996), “Predictability of the Dry Bulk Shipping Market by BIFFEX,” Maritime Policy and Management, Vol.23, No. 2, pp. 103-114.
26. Charnes A., Clark, C. T., Cooper, W. W., and Golany, B. (1985), “A Developmental Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the US Air Force,” Annals of Operations Research, Vol. 2, Iss. 1, pp. 95-112.
27. Charnes, A. and Cooper, W. W. (1984), “The Non-Archimedean CCR Ratio for Efficiency Analysis: A Rejoinder Boyd and Fare,” European Journal of Operational Research, Vol. 15, No. 3, pp. 333-334.
28. Charnes, A., Cooper, W. W., and Rhodes, E. (1978), “Measuring the Efficiency of Decision Making Units,” European Journal of Operational Research, Vol. 2 No. 6, pp. 429-444.
29. Charnes, A., Cooper, W. W., Lewin, A. Y., Morey R. C., and Rousseau, J. (1985), “Sensitivity and Stability Analysis in DEA,” Annals of Operations Research, Vol. 2, No. 2, pp. 139-156.
30. Clarkson Research Services (2015a), The Clarkson Shipping Review and Outlook, London, United Kingdom.
31. Clarkson Research Services (2015b), Shipping Intelligence Weekly, London, United Kingdom. 
32. Cooper, W. W. and Ruiz, J. L. (2007), “Choosing Weights from Alternative Optimal Solutions of Dual Multiplier Models in DEA,” European Journal of Operational Research, Vol. 180, No. 1, pp. 443-458.
33. Doyle, J. and Green, R. (1994), “Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses,” Journal of the Operational Research Society, Vol. 45, No. 5, pp. 567-578.
34. Dryships (2016), Daily Market: This Page Contains the Latest Dry Bulk Shipping News, Accessed http://www.dryships.com/pages/report.php, Retrieved on 1/17/2016.
35. Engelen, S. Dullaert, W. and Vernimmen, B. (2007), “Multi-agent Adaptive Systems in Dry Bulk Shipping,” Transportation Planning and Technology, Vol. 30, No. 4, pp. 377-389.
36. Färe, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992), “Productivity Change in Swedish Pharmacies 1980-1989: A Non-parametric Malmquist Approach,” Journal of Productivity Analysis, Vol. 3, Iss. 1, pp. 85-101.
37. Färe, R., Lovell, C. A. K., and Zieschang, K. (1983), “Measuring the Technical Efficiency of Multiple Output Production Technologies,” in Eichhorn, W., Henn, R., Opitz, O. and Shephard, R. W. (Eds.), Quantitative Studies in Production and Prices, Wurzburg: Physica-Verlag.
38. Farrell, M. J. (1957), “The Measurement of Productive Efficiency,” Journal of the Royal Statistical Society, Vol. 120, No. 3, pp. 253-290.
39. Golany, B. and Roll, Y. (1989), “An Application Procedure for DEA,” Omega, Vol. 17, No. 3, pp. 237-250.
40. Grammenos, C. Th. and Arkoulis, A. G. (2003), “Determinants of Spreads on New High Yield Bonds of Shipping Companies,” Transportation Research Part E, Vol. 39, No. 6, pp. 459-471.
41. Ichor Coal (2016/04), Accessed http://www.ichorcoal.com/our-business/market-research, Retrieved on 4/20/2016.
42. Institute of Shipping Economics and Logistics (2005~2015), Shipping Statistics and Market Review (SSMR), Bremen, Germany.
43. Karsak, E. E. and Ahiska, S. S. (2005), “Practical Common Weight Multi-Criteria Decision-making Approach with An Improved Discriminating Power for Technology Selection,” International Journal of Production Research, Vol. 43, No. 8, pp. 1537-1554.
44. Lee, H. S., Chu, C. W., and Zhu, J. (2011), “Super-efficiency DEA in the Presence of Infeasibility,” European Journal of Operational Research, Vol. 212, Iss. 1, pp. 141-147.
45. Li, X. B. and Reeves, G. R. (1999), “A Multiple Criteria Approach to Data Envelopment Anaylsis,” European Journal of Operational Research, Vol. 115, Iss. 3, pp. 507-517.
46. Nilsen, E. L. and Dønvik, K. (2010), Financial Crisis and the Shipping Industry - How and Why Shipping Companies Were Affected by the Crisis, University of Agder, Norway, Master Thesis. 
47. Olesen, O. and Petersen, N. C. (2003), “Identification and Use of Efficient Faces and Facets in DEA,” Journal of Productivity Analysis, Vol. 20, No. 3, pp. 323-360.
48. Scarsi, R. (2007), “The Bulk Shipping Business: Market Cycle and Shipowners’ Biases,” Maritime Policy and Management, Vol. 34, No. 6, pp. 577-590.
49. Schoenbaum, T. J. (1987), Admiralty and Maritime Law, Practitioner’s Ed., New York: West Publishing Co.
50. Seiford, L. M. (1996), “Data Envelopment Analysis: the Evolution of the State of the Art (1978-1995),” Journal of Productivity Analysis, Vol. 7, Iss. 2, pp. 99-137.
51. Sexton, T. R., Silkman, R. H., and Hogan, A. J. (1986), “Data Envelopment Analysis: Critique and Extension,” New Directions for Program Evaluation, Vol. 32, Iss. 32, pp. 73-105.
52. Stopford, M. (2009b), Maritime Economics, 3rd Ed., Routeledge, London.
53. Stopford, M. (2009a), “Forecasting – An Impossible Job? What Will the Global Stimulus Package Do for Shipping? Is It All About China? Are We Heading for Another Dry Bulk Bonanza?” Tradewinds Norshipping Conference, Clarkson Research.
54. Sueyoshi, T. (1997), “Measuring Efficiencies and Returns to Scale of Nippon Telegraph & Telephone in Production and Cost Analyses,” Management Science, Vol. 43, No. 6, pp. 779-796.
55. Thompson, R. G., Langemeier, L. N., Lee, E., and Thrall, R. M. (1990), “The Role of Multiplier Bounds in Efficiency Analysis with Application to Kansas Farming,” Journal of Econometrics, Vol. 46, Iss. 1-2, pp. 93-108.
56. Timmermann, K. W. and Mc Conville, J. (1996), “An Analysis of the Quality and Redistribution of Dry Capesize Tonnage,” Maritime Policy and Management, Vol. 23, No. 1, pp. 45-53.
57. Toloo, M. (2013), “The Most Efficient Unit without Explicit Inputs: An Extended MILP-DEA Model,” Measurement, Vol. 46, No. 9, pp. 3628-3634.
58. Toloo, M. and Kresta, A. (2014). “Finding the Best Asset Financing Alternative: A DEA–WEO Approach,” Measurement, Vol. 55, Sep., pp. 288-294.
59. United Nations Conference on Trade and Development (2015), Review of Maritime Transport, Geneva, Switzerland.
60. Veenstra, A. W. (1999), “The Term Structure of Ocean Freight Rates,” Maritime Policy and Management, Vol. 26, No. 3, pp. 279-293.
61. Veldhuizen, P. J. (1988), Freight Future, Targeting The 90s, LLP Special Report, London: Lloyd’s of London Press Ltd.
62. WTO (2015), Average trade growth 1990-2014, Accessed https://www.wto.org/english/news_e/pres15_e/pr739_e.htm, Retrieve on 1/17/2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊