跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊皓程
研究生(外文):Chuang, Hao-Cheng
論文名稱:低頓轉扭矩之無感測器軸向磁通六相無刷永磁電動機設計
論文名稱(外文):Design of Axial-Flux Sensorless Six-Phase Brushless Permanent Magnet Motor for Cogging Torque Reduction
指導教授:余興政
指導教授(外文):Yu, Hsing-Cheng
口試委員:黃仲欽黃加恩張忠誠
口試委員(外文):Hwang, Jonq-ChinHwang, Chia-EnChang, Chung-Cheng
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:頓轉轉矩層疊C型矽鋼片定子結構永磁直流無刷電動機六相電動機稀土元素表面結構設計
外文關鍵詞:cogging torqueC-shaped laminated slot structurepermanent magnet brushless DC motorrare-earth materialsix-phase motorsurface structure design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
永磁直流無刷電動機因其具有高功率密度與扭力密度,而被大量的應用在工業及電子產品之驅動系統中,全球終端用電有46%用於電動機及其相關的設備,但電動機中使用的稀土元素材料原料價格大幅上漲,如何在有限的稀土材料使用量之情況下,設計出降低稀土使用量,且能維持功率密度與輸出功率的電動機,已成為當前重要的研究議題。本論文著重在設計低頓轉扭矩之無感測器軸向磁通六相無刷永磁電動機,以層疊C型矽鋼片定子的雙氣隙定子結構搭配層疊C型矽鋼片定子與永磁轉子表面結構設計方法,研究減少頓轉轉矩的效果;表面結構設計方法減少使用的稀土磁石與矽鋼片材料,降低電動機的生產成本外,也能符合降低頓轉轉矩的設計要求。設計過程中使用ANSYS Maxwell三維模擬軟體進行模擬評估,模擬結果研究驗證層疊C型矽鋼片定子結構透過層疊矽鋼片與雙氣隙結構,可以將大部分的磁力線維持在結構內,以維持扭力輸出並倍增磁通作用區域,並由調整磁通鏈可以降低頓轉轉矩,確認電動機設計要求後製作雛型機;表面結構設計能夠達成降低頓轉轉矩目標,層疊C型矽鋼片定子與永磁轉子使用表面結構設計模擬結果的最佳化組合中,其頓轉轉矩峰值減少量可達34.4 %,永磁轉子體積減少量為4.5 %,因永磁轉子體積減少造成輸出轉矩下降,其下降量為12 %,氣隙磁通密度峰值減少11.3 %。
Permanent magnet brushless DC motors can be widely applied in drive systems of industrial and electronic products due to the advantages of high power density and high torque density. There is 46% of power consumption which resulting from the motor and other related equipment. As long as the price of rare earth material raises rapidly, the motor design with low rare earth usage and maintaining power density and output power under restricted resource become an important research issue. The thesis focuses on cogging torque reduction design of a slim axial-flux sensorless six-phase brushless permanent magnet motor with low rare earth material. Using C-shaped laminated slot structure in the stator with double air-gap structure and surface structure with notched design on both the stator and the rotor and C-shaped laminated slot structure are presented in this study to accomplish the goal of cogging torque reduction. Adopting finite element analysis simulation software, ANSYS Maxwell, The simulation results are provided to verify the magnetic force line between the permanent magnets and the stators which can be modified by using the C-shaped laminated slot structure design shows the magnetic flux linkage arranging inside the stator for reducing cogging torque. Confirming the design is correct and then preparing for a prototype. The optimal cogging torque reduction percentage in simulation results with the C-shaped laminated slot structure and permanent magnet rotor utilizing surface structure design is up to 34.4%. The reduction percentage of permanent magnet rotor volume is 4.5%. Because of the decreasing volume of permanent magnet rotor, the output torque and the air gap flux decrease 12% and 11.3%, respectively.
目錄

摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
詞彙或特殊符號說明 XI
第一章 緒論 13
1.1 研究動機與目的 13
1.2 文獻回顧 14
1.2.1 永磁直流無刷電動機研究 14
1.2.2 頓轉轉矩減少方法 16
1.2.3 六相永磁直流無刷電動機設計 17
1.3 本文架構 17
第二章 低頓轉扭矩之無感測器軸向磁通六相無刷永磁電動機設計 18
2.1 電動機特性分析 18
2.2 電動機參數設定 20
2.2.1 層疊C型矽鋼片定子 22
2.2.2 永磁轉子 26
2.2.3 電動機轉軸與漆包線選用 31
2.2.4 層疊C型矽鋼片定子與永磁轉子表面結構設計 32
2.3 電動機設計圖與雛型機製作 34
第三章 六相永磁直流無刷電動機與頓轉轉矩之數學模型 44
3.1 六相永磁直流無刷電動機數學模型 44
3.2 電動機轉矩數學模型 50
3.3 六相永磁直流無刷電動機之繞線配置 52
3.4 六相永磁直流無刷電動機之繞組設計 54
3.5 六相永磁直流無刷電動機開迴路控制實測結果 56
第四章 實驗結果 62
4.1 電動機雛型機組裝流程 62
4.2 層疊C型矽鋼片定子與永磁轉子表面結構設計實驗方法與模擬 71
4.2.1 層疊C型矽鋼片定子 73
4.2.2 永磁轉子 75
4.2.3 ST-4與PM-3組合模擬結果 77
4.3 模擬結果 80
4.4 最佳化組合之雛型機製作 80
第五章 結論與未來工作 82
5.1 結論 82
5.2 未來工作 82
參考文獻 83


[1] D. Hanselman, Brushless Permanent Magnet Motor Design, 2nd ed., The Writers’ Collective, 2003.
[2] R. Qu, M. Aydin, and T. A. Lipo, “Performance comparison of dual-rotor radial-flux and axial-flux permanent-magnet BLDC machines,” in Proceedings of the IEEE International Electric Machines and Driver Conference, Vol. 3, pp. 1948-1954, 2003.
[3] X. Wang and J. Du, “Performance analysis of a wedgy airgap disk coreless permanent magnet synchronous motor,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1811-1816, June 25-28, 2006.
[4] R. AI Zaher, S. de Groot, H. Polinder, and P. Wieringa, “Comparison of an axial flux and a radial flux permanent magnet motor for solar race cars,” in Proceedings of the International Conference on Electrical Machines (ICEM), pp. 1-6, 2007.
[5] J. F. Gieras, R. J. Wang, and M. J. Kamper, Axial flux Permanent Magnet Brushless Machines, Kluwer Academic, 2004.
[6] 孫清華,「最新無刷直流馬達」,全華科技圖書,2001。
[7] K. Sitapati and R. Krishnan, “Performance comparisons of radial and axial field permanent-magnet brushless machines,” IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1219-1226, 2001.
[8] H. Vansompel, P. Sergeant, L. Dupre, and A. V. den Bossche, “Improving the torque output in radial- and axial-flux permanent-magnet synchronous machines with concentrated windings by using a combined wye-delta connection,” in Proceedings of the IEEE Electrical Machines and Drives Conference, Vol. 2, pp. 936-941, 2011.
[9] A. Mahmoudi, S. Kahourzade, N. A. Rahim, and H. W. Ping, “Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor,” in Proceedings of the Progress in Electromagnetics Research, Vol. 124, pp. 383-404, 2012.
[10] I. G. Kim, S. Y. Cho, H. J. Park, H. W. Ahn, and J. Lee, “A study on the torque ripple improvement of a BLDC motor via skewed magnet,” in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), pp. 1105-1108, 2013.
[11] P. Upadhayay and K. R. Rajagopal, “Torque ripple reduction using magnet pole shaping in a surface mounted permanent magnet BLDC motor,” in Proceedings of the International Conference on Renewable Energy Research and Applications (ICRERA), pp. 516-521, 2013.
[12] 曾仁志,「無感測器驅動系統於薄型馬達之設計與實現」,國立成功大學機械工程學系,碩士論文,2007。
[13] 許良伊,「Halbach磁環於永磁無刷馬達之設計與特性分析」,國立成功大學機械工程學系,碩士論文,2003。
[14] 茆尚勳,「新型切換式磁阻與同心式永磁馬達之設計與實現」,國立成功大學機械工程學系,博士論文,2006。
[15] T. Srisiriwannan and M. Konghirun, “A study of cogging torque reduction methods in brushless DC motor,” in Proceedings of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1-4, 2012.
[16] Y. Wang, H. Jing, W. Chen, and X. J. Wang, “The analysis and simulation of motor’s torque ripple in electric vehicle,” in Proceedings of the Consumer Electronics, Communications and Networks (CECNet), pp. 5328-5331, 2011.
[17] P. Upadhyay and K. R. Rajagopal, “Torque ripple minimization of interior permanent magnet brushless DC motor using rotor pole shaping,” in Proceedings of the International Conference on Power Electronics, Drives and Energy Systems, pp. 1-3, 2006
[18] 江瑞利、劉勳翰、李榮原、江瑞安,「永磁式同步馬達的幾何結構參數對頓轉轉矩之影響」,海峽兩岸大學校長論壇暨科學技術研討會,2006。
[19] D. Wu. and Z. Zhu, “Design trade-off between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines,” in Proceedings of the IEEE Magnetics Conference (INTERMAG2015), pp. 1, 2015.
[20] E. Yolacan, E. Ozyurt, and M. Aydin, “Magnet shape optimization of a slotted surface-mounted axial gap PM motor for reducing cogging torque,” in Proceedings of the 11th International Electrical Machines (ICEM), pp. 1-6, 2010.
[21] JRI-Solutions, Ltd.編譯:勢流科技 陳桂村,「具歪斜定子鐵心之SPM馬達的頓動轉矩分析」,2009。
[22] 郭景全,「降低永磁無刷馬達頓轉轉矩之研究」,逢甲大學資訊電機工程碩士在職專班,碩士論文,2006。
[23] J. Wang, L. Zhou, T. Yang, and Y. Wang, “Cogging torque reduction in interior permanent magnet brushless DC motor with flux-concentration type rotor,” in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6, 2009.
[24] W. Fei and Z. Q. Zhu, “Comparison of cogging torque reduction in permanent magnet brushless machines by conventional and herringbone skewing techniques,” IEEE Transactions on Energy Conversion, Vol. 28, No. 10, pp. 664-674, 2013.
[25] Y. Dönmezer and L. T. Ergene, “Skewing effect on interior type BLDC motors,” in Proceedings of the XIX International Conference on Electrical Machines (ICEM), pp. 1-5, 2010.
[26] 黃建欽,「新型二相直流無刷馬達之分析與實現」,國立成功大學機械工程學系,博士論文,2003。
[27] 高瑋澤,「風力發電用三相/六相永磁式同步發電機設計及製作」,國立臺灣科技大學電機工程系,碩士論文,2012。
[28] 李瑤,「五相永磁式同步電動機分析及設計」,國立臺灣科技大學電機工程系,碩士論文,2012。
[29] 傅聖雄,「六相感應電動機特性模擬及驅動電路研製」,國立高雄應用科技大學電機工程系,碩士論文,2013。
[30] 蕭鈞毓,「六相及雙三相繞組永磁式同步電機之分析及設計」,國立臺灣科技大學電機工程系,碩士論文,2007。
[31] A. Kadaba, S. Suo, G. Y. Sizov, C. C. Yeh, A. Sayed-Ahmed, and N. A. Demerdash, “Design and modeling of a reversible 3-phase to 6-phase induction motor for improved survivability under faulty conditions,” in Proceedings of the IEEE Power and Energy Society General Meeting, May 2008.
[32] 中國鋼鐵股份有限公司,「電磁鋼捲電磁特性曲線」,產品型錄,2004。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊