跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育齊
研究生(外文):Chang, Yu-Chi
論文名稱:推拉板式波能轉換器的流體動力表現之最佳化
論文名稱(外文):Optimization for Hydrodynamic Performances of Flapper Wave Energy Converters
指導教授:周一志
指導教授(外文):Chow, Yi-Chih
口試委員:陳邦富顏志偉林鎮洲臧效義陳建宏
口試委員(外文):Chen, Bang-FuhYen, Chih-WeiLin, Chen-ChouTzang, Shiaw-YihChen, Jiahn-Horng
口試日期:2016-06-14
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:96
中文關鍵詞:波能捕獲係數底部鉸鏈推拉板波能轉換器功率輸出系統阻尼推拉板幾何尺寸與波長之比推拉板慣性理論-數值模擬-實驗
外文關鍵詞:capture factorbottom-hinged flap-type WECPTO’s dampingratio of flap body’s geometry and incident wavelengthflap body’s inertiatheory-simulation-experiment
相關次數:
  • 被引用被引用:5
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
海洋能源是眾多綠能中開發難度較高與商業化成熟度較低的能源型式,但其能源潛勢非常充足。波浪能源屬於海洋能源中的一種,因其高潛勢的特性吸引了許多學術研究者及開發設計者的關注,因此相當多類型的波能轉換器(wave energy converter, WEC)概念隨之產生。為因應臺灣特殊的極端氣候(颱風),本論文選擇了在發展概念上能避開海水表面因颱風所產生之巨大波浪能量的衝擊,也就是所謂的”底部鉸鏈推拉板式波能轉換器”(bottom-hinged flap-type WEC)來進行研究並期望將來能應用至類似臺灣這種相對波能潛勢較低的海域。
本論文以二維勢流理論結合數值模擬(WEC-Sim)的方法探討底部鉸鏈推拉板式WEC的基本水動力特性與波能捕獲係數(capture factor),並以實驗輔助驗證其所預測之趨勢。底部鉸鏈推拉板式WEC的波能捕獲表現受到三個重要參數的影響:推拉板慣性(轉動慣量)與恢復力矩(restoring moment)、功率輸出系統(Power Take-Off ,PTO)阻尼以及推拉板幾何尺寸與波浪特性(波長)之相對比例。
本論文從理論分析獲得了數個重要的底部鉸鏈推拉板式波能轉換器之設計原則,包含推拉板板體本身因浮力所產生的恢復力矩效應與慣性效應之間的抵消(阻抗抵消,impedance cancelling)、波浪幅射效應(radiation effect)與PTO阻尼效應(damping effect)之間的對應(阻抗匹配,impedance matching)以及在近岸海域(coastal water)的條件下,PTO阻尼無須因應不規則波浪(irregular wave)中的週期(波長)變動等等。之後則進一步地藉由WEC-Sim數值模擬針對臺灣東北海域(國立台灣海洋大學海洋能測試場)最常出現的波浪波長進行板體幾何最佳化,改變推拉板板體的幾何尺寸(板寬與板厚)再計算相對應的波能捕獲係數,結果顯示當板體寬度約為入射波長的三分之一時(約為21公尺至23公尺之間),搭配合適的PTO阻尼可達到最高的波能捕獲係數(約為0.8)。二維理論與三維數值模擬結果之對比顯示波浪繞射效應(diffraction effect)為推拉板表現的最關鍵因素。從本論文所引發的底部鉸鏈推拉板式WEC之小型化與更進一步的量測WEC週圍流場之波浪幅射/繞射效應,是未來可以延續發展的重點目標。

Wave energy as a major type of renewable energy from the ocean has considerable potential to be exploited. Therefore, so many kinds of wave energy converter (WEC) have been conceptually proposed for different applications in recent years. This thesis studies the bottom-hinged flap-type WEC, which can be folded to submerge to avoid impacts of huge waves caused by the extreme weathers of Taiwan like typhoons, aiming to maximize its energy capture for the application in the sea area around Taiwan with relatively low wave resources.
This thesis combines the 2-D analytical theory and 3-D numerical simulations (WEC-Sim) to elucidate how the hydrodynamic characteristics affect the capture factor (CF) of the bottom-hinged flap-type WEC, along with conducting experiments to validate the predicted trends. The wave-energy-capturing performance of the bottom-hinged flap-type WEC can be attributed to three important parameters: the (moment of) inertia and restoring moment of the flap body, the damping of the power take-off (PTO) and the ratio of the flap body’s geometry and the incident wavelength (L).
Derived from the 2-D analytical theory, several important design principles are obtained, including the impedance cancelling involving the restoring moment and inertia effects, the impedance matching between the PTO’s damping effect and the wave radiation effect, and the negligibility of the influence of the wave variability on the bottom-hinged flap-type WEC’s performance under the costal-water condition for irregular waves. After that, we are able to optimize the geometry of the flap body based on the characteristic wavelengths in the northeast of Taiwan (the test site of the National Taiwan Ocean University) using WEC-Sim. WEC-Sim simulations for different widths (B) and thicknesses (d) of the flap body show that the maximum CF can be as high as about 0.8 with B/L around 1/3 (B ranging from 21m to 23m) at an appropriate PTO’s damping coefficient. The comparisons between the 3-D simulation and 2-D analytical results indicate that the wave diffraction effect is a key factor to the trend of CF. The issues of the size minimization of the bottom-hinged flap-type WEC and the measurements of wave radiation/diffraction effects in the flow field around the WEC can be further addressed in the future.
摘要 I
Abstract II
目次 III
圖目次 IV
表目次 VI
詞彙或特殊符號說明 VII
第一章 前言 1
1-1研究背景與動機 1
1-2文獻回顧 8
1-3研究目標與方法 12
1-4本文架構 14
第二章 二維推拉板式波能轉換器之解析理論 15
2-1理論推導 15
2-2理論分析 28
第三章 推拉板式波能轉換器之最佳化數值模擬 35
3-1 WEC-Sim方法原理 35
3-2推拉板原型尺寸之WEC-Sim數值計算 42
第四章 推拉板式波能轉換器之模型試驗 61
4.1推拉板模型與實驗水槽設置 68
4.2推拉板WEC動態特性之輔助驗證 72
第五章 結論與建議 82
參考文獻 85
附錄A-勢流函數之待定係數 91
附錄B-WAMIT基本原理與使用說明 93
附錄C-WAMIT網格驗證 95
[1] Thorpe, T. W. A brief review of wave energy, Technicalreportno. R120, EnergyTechnology SupportUnit (ETSU), A report produced for the UK Department of Trade and Industry (1999).
[2] López, I., Andreu, J., Ceballos, S., de Alegría, I. M., and Kortabarria, I., “Review of wave energy technologies and the necessary power-equipments,” Renewable and Sustainable Energy Reviews, vol. 27, pp. 412-434 (2013).
[3] Falnes, J. “A review of wave-energy extraction,” Marine Structures, vol 20, pp. 184-201 (2007).
[4] Ocean Energy Technology Overview, U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program (2009).
[5] Drew, B., Plummer A. R., and Sahinkaya M. N., “A review of wave energy converter technology,” Proc. IMechE Part A: J. Power and Energy, vol. 223, pp. 887-902 (2009)
[6] Duckers, L. “Wave energy,” Renewable energy, ch. 8, Oxford University Press (2004).
[7] Vantorre, M., Banasiak, R. and Verhoeven, R. “Modelling of hydraulic performance and wave energy extraction by a point absorber in heave,” Applied Ocean Research, vol.26, pp. 61-72 (2004).
[8] Salter, S. H. “Wave power,” Nature, vol. 249, pp. 720-724 (1974).
[9] Folley, M., Whittaker, T., and Osterried, M., “The Oscillating Wave Surge Converter,” ISOPE’s 14th International Offshore and Polar Engineering Conference, Toulon, France (2004).
[10] Folley, M., Whittaker, T., and Henry, A., “The performance of a wave energy converter in shallow water,” 6th European Wave and Tidal Energy Conference, Glasgow, UK (2005).
[11] Folley, M., Whittaker T., and Hoff. J. van´t, “The design of small seabed-mounted bottom-hinged wave energy converters,” 7th European Wave and Tidal Energy Conference (2007).
[12] Whittaker, T., Beattie, W., Folley, M., Boake, C., Wright, A., Osterried, M. and Heath, T., “The Limpet Wave Power Project-The First Years of operation,” (2006).
[13] López, I., Pereiras, B., Castro, F., and Iglesias, G., “Performance of OWC wave energy converters: influence of turbine damping and tidal variability,” Int. J. Energy Res., vol 39, pp 472-483 (2015).
[14] Wave Dragon. Available from http://www.wavedragon.net/.
[15] Wavestar. Available from http://www.wavestarenergy.com/.
[16] Available from http://www.faststuff.com/cleantech/wavestar-showing-way/3688.
[17] Folley, M., and Whittaker, T., “Analysis of the nearshore wave energy resource,” Renew. Energy, vol. 34, pp. 1709-1715 (2009).
[18] 涂泊樺、顏志偉,”淺談我國海洋能源之開發前景”,物理雙月刊, vol. 29,pp. 718-726 (2007)。
[19] Chow, Yi-Chih, Chang, Y. C., Da-Wei Chen, and Tzang, S. Y., “Maximization of Energy Capture for a Bottom-Hinged Flapper Wave Energy Converter with Effects of Shape and PTO’s Damping for Wave Resources of Taiwan,” Renew. Energy (Under Review).
[20] Folley, M., and Whittaker, T., “The cost of water from an autonomous wave-powered desalination plant,” Renew. Energy, vol. 34, pp. 74-81 (2009).
[21] 採自www.aquamarinepower.com。
[22] Haskind, M. D., “The exciting forces and wetting of ships in waves,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, vol. 7, pp. 64-79 (1957) (English translation by DTMB 307, Newman, J. N.).
[23] Newman, J. N, “The exciting forces on fixed bodies in waves,” J. Ship Res., vol. 6, pp. 10-17 (1962).
[24] Newman, J. N, “Interaction of waves with two-dimensional obstacles: a relation between the radiation ad scattering problems,” J. Fluid Mech., vol. 71, pp. 272-282 (1975).
[25] Evans, D.V., “A theory for wave-power absorption by oscillating bodies,” J. Fluid Mech., vol. 77, pp. 1-25 (1976).
[26] Mei, C.C., “Power extraction from water waves,” J. Ship Res., vol. 20, pp. 62-66 (1976).
[27] Mei, C.C., “The applied dynamics of ocean surface waves,” World Scientific (1992).
[28] Falnes, J., “Ocean waves and oscillating systems,” Cambridge University Press (2002)
[29] 張育齊、李耀輝、周一志,”推拉板式波能轉換器效率之理論分析”,第34屆全國力學會議 (2010)。
[30] Dean, R. G., and Dalrymple, R. A., “Water Wave Mechanics for Engineers and Scientists,” World Scientific (1991).
[31] Chang, Y. C., Chen, D. W., Chow, Y. C., Tzang, S. Y., Lin, C. C., Chen, J. H., “Theoretical analysis and SPH simulation for the wave energy captured by a bottom-hinged OWSC,” J. Mar. Sci. Technol.-Taiwan, vol. 23, pp. 901-908 (2015).
[32] Umeda, N., Hashimoto, H., Vassalos, D., Urano, S., and Okou, K., “Nonlinear dynamics on parametric roll resonance with realistic numerical modeling,” International Shipbuilding Progress, vol. 51, pp 205-220 (2004)
[33] Shin, Y. S., Belenky, V. L. Paulling, J. R., Weems, K.M., and Lin, W.M., “Criteria for parametric roll of large containerships in longitudinal Seas,” ABS Technical paper (2004).
[34] Zhang, X., Yang, H., “Sensitivity analysis of parametric roll resonance in for ships irregular waves,” J. Harbin Eng. University, vol. 36, pp 1539-1543 (2015).
[35] Yoshida, M., Iwashita, H., Kanda, M., Kihara, H., and Kinoshita, T., “Unsteady characteristics of lift generated by small underwater control fin,” Transaction of the Royal Institution of Naval Architects Part A: Int. J. Mar. Eng., vol. 158, pp 49-59 (2016).
[36] Nunes, G., Valério, D., Beirão, P., and Costa, J. S., “Modelling and control of a wave energy converter,” Renew. Energy, vol. 36, pp. 1913-1921 (2011).
[37] Oskamp, J. A., and Özkan-Haller, H. T., “Power calculations for a passively tuned point absorber wave energy converter on the Oregon coast,” Renew. Energy, vol. 45, pp. 72-77 (2012).
[38] Koh, H. J., Ruy, W. S., Cho, I. H., and Kweon, H. M., “Multi-objective optimum design of a buoy for the resonant-type wave energy converter,” J. Mar. Sci. Technol.-Japan, vol. 20, pp. 53-63 (2015).
[39] Renzi, E., and Dias, F., “Resonant behaviour of an oscillating wave energy converter in a channel,” J. Fluid Mech., vol. 701, pp. 482-510 (2012).
[40] Renzi, E., and Dias, F., “Hydrodynamics of the oscillating wave surge converter in the open ocean,” Eur. J. Mech. B/Fluids, vol. 41, pp. 1-10 (2013).
[41] Sarkar, D., Renzi, E., and Dias, F., “Effect of a straight coast on the hydrodynamics and performance of the Oscillating Wave Surge Converter,” Ocean Eng., vol. 105, pp. 24-32 (2015).
[42] Henderson, R., “Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter,” Renew. Energy, vol. 31, pp. 271-283 (2006).
[43] Baker, N. J., and Mueller, M. A., “Direct drive wave energy converters,” Revue des Energies Renouvelables, vol. 4, pp 1-7 (2001).
[44] Baker, N. J., Mueller, M. A., and Brooking, P. R. M., “Electrical power conversion in direct drive wave energy converters,”, 5th European Wave Energy Conference, pp. 197–204, Cork, Ireland (2003).
[45] Mueller, M. A., “Electrical generators for direct drive wave energy converters,” IEE Proc. Gener. Trans. Distrib., vol. 149, pp. 446-456 (2002).
[46] Shek, J. K. H., Macpherson, D. E., and Mueller, M. A., “Experimental verification of linear generator control for direct drive wave energy conversion,” IET Renew. Power Gener., vol. 4, pp. 395-403 (2010).
[47] Hong, Y., Eriksson, M., Castellucci, V., and Boström C., Waters, R., “Linear generator-based wave energy converter model with experimental verification and three loading strategies,” IET Renew. Power Gener., vol. 10, pp. 349-359 (2016).
[48] Thresher, R.W. and Dodge, D. M., “Trends in the evolution of wind turbine generator configurations and systems,” Wind Energy, vol. 1, pp. 70-86 (1998).
[49] Ackermann, T. and Söder, L., “Wind energy technology and current status: a review,” Renew. Sust. Energy Rev., vol. 4, pp. 315-374 (2000).
[50] Tapia, A.,Tapia, G., Ostolaza, J. X., and Saenz, J. R. “Modeling and control of a wind turbine driven doubly fed induction generator,” IEEE Trans. Energy Convers., vol. 18, pp. 194-204 (2003).
[51] Curran, R. and Gato, L. M. C., “The energy conversion performance of several types of wells turbine designs,” Proc. IMechE, Part A: J. Power and Energy, vol. 211, pp. 133-145 (1997).
[52] Torresi, M., Camporeale, S. M., Strippoli, P. D., and Pascazio, G., “Accurate numerical simulation of a high solidity wells turbine,” Renew. Energy, vol. 33, pp. 735-747 (2008).
[53] Kim, T. H., Takao, M., Setoguchi, T., Kaneko, K., and Inoue, M., “Performance comparison of turbines for wave power conversion,” Int. J. Therm. Sci., vol. 40, pp. 681-689 (2001).
[54] Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T., and Krokstad, J., “Numerical benchmarking study of a selection of wave energy converters,” Renew. Energy, vol.41, pp. 43-63 (2012).
[55] Folley, M., Whittaker, T. and Henry, A., “The effect of water depth on the performance of a small surging wave energy converter,” Ocean Engineering, vol.34, pp. 1264-1274 (2007).
[56] Whittaker, T. and Folley, M., “Nearshore oscillating wave surge converters and the development of Oyster,” Phil. Trans. R. Soc. A, vol. 370, pp 344-364 (2012).
[57] Wei, Y., Rafiee, A., Henry, A., and and Dias, F., “Wave interaction with an oscillating wave surge converter, Part I: Viscous effects,” Ocean Eng., vol. 104, pp. 184-203 (2015).
[58] Wei, Y., Rafiee, A., Henry, A., and and Dias, F., “Wave interaction with an oscillating wave surge converter, Part II: Slamming,” Ocean Eng., vol. 113, pp. 319-334 (2016).
[59] Cameron, L., Doherty, R., Henry, A., Doherty, K., Van ’t Hoff, J., Kaye D., Naylor, D., Bourdier, S., and Whittaker, T. “Design of the Next Generation of the Oyster Wave Energy Converter,” 3rd International Conference on Ocean Energy (ICOE), Bilbao (2010).
[60] Chang, Y. C., and Chow, Y. C., “End-Plate Effects on the Performance of Flapper Wave Energy Converter,” Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics (2015).
[61] Sarkar, D., Doherty, K., and Dias, F., “The modular concept of the Oscillating Wave Surge Converter,” Renew. Energy, vol. 85, pp. 483-497 (2016).
[62] Yu, Y. H., Lawson, M., Ruehi, K., and Michelen, C., “Development and demonstration of the WEC-Sim wave energy converter simulation tool,” Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, U.S. (2014).
[63] Lawson, M., Yu, Y. H., Nelessen, A., Ruehi, K., and Michelen, C., “Implementing nonlinear buoyancy and excitation forces in the WEC-Sim wave energy converter modeling tool,” Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, U.S. (2014).
[64] WAMIT User Manual v.7.062, http://www. wamit.com (2013).
[65] 張育齊,李耀輝,周一志,林鎮洲,臧效義,陳建宏,”振盪衝擊式波能轉換器在捕獲係數上之機械阻抗”,中國造船暨輪機工程學刊,vol. 33,pp. 183-192 (2014)。
[66] WEC-Sim User Manual v1.0.
[67] Phantom Camera Control Software – Help File, Revision:675.
[68] http://www.kyowa-ei.com/eng/product/category/strain_gages/search_strain_gages.html.
[69] National Instruments PXIe-4330/4331 User Manual (2010).
[70] Raffel, M., Willert, C. E., Wereley, S. T. and Kompenhans, J., Particle Image Velocimetry – A Practical Guide, Springer, (2007).
[71] Fox, R. W., Pritchard, P. J., McDonald, A. T., “Introduction to Fluid Mechanics,” John Wiley & Sons (Asia) Pte Ltd (2010)
[72] Chang, Y. C., Lee, Y. H., Chow, Y. C., Lin, C. C., Tzang, S. Y., Chen, J. H., “Effects of wave impedance on the energy capture of bottom-hinged OWSCs,” CG-JOINT (2014).
[73] Budal, K., “Theory for absorption of wave power by a system of interacting bodies,” J. Ship Res., vol. 21, pp. 248-253 (1977).
[74] Falnes, J., “Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves,” Appl. Ocean Res., vol. 2, pp. 75–80 (1980).
[75] Backer, D., Vantorre, G., Beels, M., C., and De Rouck, J., and Frigaard, P., “Power absorption by closely spaced point absorbers in constrained condition,” IET Renew. Power Gener., vol 4, pp. 579-591 (2010).
[76] Srokosz, M. A., and Evans, D.V., “A theory for wave-power absorption by two independently oscillating bodies,” J. Fluid Mech., vol. 90, pp. 337-362 (1979).
[77] Renzi, E., and Dias, F., “Relations for a periodic array of flap-type wave energy converters,” Appl. Ocean Res., vol. 39, pp. 31-39 (2012).
[78] Scher, R. M., Troesch, A. W., and Zhou, G., “The experimental and theoretical evaluation of a twin-flap wave-energy absorbing device,” Ocean Eng., vol. 10, pp. 324-345 (1983).
[79] Wilke, R. O., “The tandem flap wave power device,” Proceeding of the 3rd International Offshore Mechanics and Arctic Engineering Symposium. Presented at Energy Sources Technology Conference & Exhibition, pp. 294-301 (1984).
[80] 黃偉銘,”以PTO與恢復力矩為考量的推拉板式波能轉換器之最佳化”,國立台灣海洋大學系統工程暨造船學系碩士論文 (2012)。
[81] Bragg, W. H., Bragg, W.L., “The Reflexion of X-rays by Crystals,” Proc R. Soc. Lond., vol. 88, pp. 428-38 (1913).
[82] Cowley, J. M., “Diffraction physics,” Amsterdam, New York : Elsevier Science B.V. (1995).
[83] Yu, J., and Howard, L. “On higher order Bragg resonance of water waves by bottom corrugations,” J. Fluid Mech., vol. 659, pp. 484-504 (2010).
[84] Linton, C. M., “Water waves over arrays of horizontal cylinders: Band gaps and Bragg resonance,” J. Fluid Mech., vol. 670, pp. 504-526 (2011).
[85] Chang, Y. C., Huang, W. M., Chow, Y. C., Lin, C. C., Tzang, S. Y., “Experimental Investigations on Two Bottom-Hinged Wave Energy Converters in Tandem Operations at Different Separation Distances,” The 10th European Wave and Tidal Energy Conference (2013).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top