(3.226.72.118) 您好!臺灣時間:2021/05/13 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宇威
研究生(外文):Chen, Yu-Wei
論文名稱:潛艦帆狀結構在不同浪高下的RCS特性分析
論文名稱(外文):Characterization Study on the RCS of Submarine Sails under Different Sea States
指導教授:翁世光
口試委員:龔彥彰王榮華
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:45
中文關鍵詞:潛艦雷達截面積外型變更法匿蹤技術
外文關鍵詞:SubmarineRadar Cross SectionReshaping MethodStealthy Technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
潛艦近年來一直受到世界各國的高度重視,不論是在學術或軍事運用上,它們能深入水下執行研究探勘、進行工程作業亦或者是保衛國土安全的重要載具。

搜索潛艦的方法主要有聲納探測及雷達探測兩種,本論文對於潛艦在進行海面作業時,遭受反潛直升機的雷達探測後,產生的雷達回波RCS進行研究探討。本論文計算雷達回波值的方法為彈跳射線法,能處理多重反射的問題,對於雷達波在潛艦與海面之間的追蹤,能有效地計算出雷達回波值。透過外型變更法,改變潛艦外型設計,針對潛艦帆狀結構的部分加以修改,來達到降低雷達回波的效果。

本論文研究的重點在於帆狀結構傾斜角度與潛艦RCS之關係,與海浪浪高對於RCS的影響。模擬後的結果顯示,當海象惡劣,海浪浪高較高的環境下,會降低潛艦的RCS,代表潛艦在此環境之下作業時,會更難被反潛直升機探測到。

In recent year, Submarines had became important platforms for military and civilian usage. Their military usage includes attacking enemy and defending our country. Their civilian usage includes marine researches and engineering projects.

Sonars and radars are common facilities for detecting submarines. In this thesis, we present a simulation procedure on tracking submarines by using airborne radars. The detectability of a submarine is represented by its Radar Cross Section(RCS). We employ the Shooting and Bouncing Ray(SBR) method to compute the RCS value: The main topics of this simulation is focused on the effects of (1)the tapering ratio of the sail structure of the submarine (2)the height of the sea waves.

致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
1. 緒論 1
1.1 前言 1
1.2 相關研究 2
1.3 研究方法與論文架構 3
2. 背景知識介紹 4
2.1 潛艦 4
2.2 翼型 6
2.3 海洋波方程組 8
2.4 雷達回波強度 10
3. 彈跳射線法 12
3.1 幾何光學 12
3.2 物理光學 14
3.3 SBR方法驗證 16
4. 模擬程序 19
4.1 雷達參數 19
4.2 潛艦幾何模型 21
4.3 波浪高度 24
5. 實作模擬與分析 26
5.1 潛艦雷達回波強度 26
5.2 潛艦於海平面上雷達回波強度 30
5.3 海洋浪高對潛艦雷達回波的影響 39
6. 結論 42
參考文獻 43

[1] X band- Wiki https://en.wikipedia.org/wiki/X_band
[2] Rao, S., Wilton, D., & Glisson, A. (1982). Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on antennas and propagation,30(3), 409-418.
[3] Furse, C. M., Mathur, S. P., & Gandhi, O. P. (1990). Improvements to the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target. IEEE Transactions on Microwave Theory and Techniques, 38(7), 919-927.
[4] Jin, J. M., Ni, S. S., & Lee, S. W. (1995). Hybridization of SBR and FEM for scattering by large bodies with cracks and cavities. IEEE Transactions on Antennas and Propagation, 43(10), 1130-1139.
[5] Meng, H. T. (2011). Acceleration of asymptotic computational electromagnetics physical optics–shooting and bouncing ray (PO-SBR) method using CUDA(Doctoral dissertation, University of Illinois at Urbana-Champaign).
[6] Perez, J., & Catedra, M. F. (1994). Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces. IEEE Transactions on Antennas and Propagation, 42(10), 1404-1411.
[7] Burcher, R., & Rydill, L. J. (1995). Concepts in submarine design (Vol. 2). Cambridge University Press.
[8] Kilo Class Submarine – Wiki https://en.wikipedia.org/wiki/Kilo-class_submarine
[9] A starboard beam view of a Soviet Kilo class patrol submarine underway https://commons.wikimedia.org/wiki/File:Submarine_Kilo_class.jpg
[10] Waters, C. (Ed.). (2012). Seaforth World Naval Review 2013. Seaforth Publishing.
[11] Airfoil nomenclature https://en.wikipedia.org/wiki/Airfoil#/media/File:Wing_profile_nomenclature.svg
[12] Plot of a NACA 0015 foil, generated from formula https://en.wikipedia.org/wiki/NACA_airfoil#/media/File:NACA0015_a.png
[13] Stern, J. M. (1995). Microsoft flight simulator handbook. Brady Pub..
[14] Cieutat, J. M., Gonzato, J. C., & Guitton, P. (2003, November). A general ocean waves model for ship design. In Virtual Concept (Vol. 4, No. 7).
[15] Ueng, S. K., Lin, D., & Liu, C. H. (2008). A ship motion simulation system.Virtual reality, 12(1), 65-76.
[16] McEvoy, A., Markvart, T., Castañer, L., Markvart, T., & Castaner, L. (Eds.). (2003). Practical handbook of photovoltaics: fundamentals and applications. Elsevier.
[17] Fournier, A., & Reeves, W. T. (1986). A simple model of ocean waves. ACM Siggraph Computer Graphics, 20(4), 75-84.
[18] 歐陽明, 鄭士康, 成亞, 李育叡 (1994). 飛機雷達截面積分析及視覺化, 國防科技發展方案學術合作協調小組研究計畫成果報告
[19] Baldauf, J., Lee, S. W., Lin, L., Jeng, S. K., Scarborough, S. M., & Yu, C. L. (1991). High frequency scattering from trihedral corner reflectors and other benchmark targets: SBR versus experiment. IEEE transactions on antennas and propagation, 39(9), 1345-1351.
[20] Alves, M. A., & Rezende, M. C. (2008). TEACHING RADAR CROSS SECTION CONCEPTS TO UNDERGRADUATES WITH A SIMULATION SOFTWARE.
[21] Sea State - Wiki https://en.wikipedia.org/wiki/Sea_state
[22] 詹燿鴻, (2015). 利用外型變更法降低風力發電機的雷達回波值, 國立臺灣海洋大學資訊工程學系碩士學位論文
[23] Altın, N., & Yazgan, E. High Frequency Back Scattering from a Real-scale Aircraft Using SBR and PTD-EEC Method. Session 3P9, 894.
[24] Gordon, W. B. (1975). Far-field approximations to the kirchoff-helmholtz representations of scattered fields. IEEE Transactions on Antennas and Propagation, 23(4), 590-592.
[25] 楊富盛, (2007). 電磁波散射場模擬與視覺化, 國立臺灣海洋大學資訊工程學系碩士學位論文
[26] Tao, Y., Lin, H., & Bao, H. (2010). GPU-based shooting and bouncing ray method for fast RCS prediction. IEEE Transactions on Antennas and Propagation, 58(2), 494-502.
[27] Gao, W., Sui, M., & Xu, X. (2011, November). Impact of the divergence factor on accurate RCS calculation using shooting and bouncing rays. In Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE), 2011 IEEE 4th International Symposium on (pp. 206-209). IEEE.
[28] Matthews, J. C., Pinto, J., & Sarno, C. (2007, April). Stealth solutions to solve the radar-wind farm interaction problem. In 2007 Loughborough Antennas and Propagation Conference (pp. 101-104). IEEE.
[29] Baussard, A., Rochdi, M., & Khenchaf, A. (2011). PO/MEC-based scattering model for complex objects on a sea surface. Progress In Electromagnetics Research, 111, 229-251.
[30] Ling, H., Chou, R. C., & Lee, S. W. (1989). Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Transactions on Antennas and propagation, 37(2), 194-205.
[31] Rius, J. M., Ferrando, M., & Jofre, L. (1993). GRECO: Graphical electromagnetic computing for RCS prediction in real time. IEEE Antennas and Propagation Magazine, 35(2), 7-17.
[32] 朱豔菊, 江月松, 張崇輝, & 辛燦偉. (2014). 應用改進的物理光學法和圖形計算電磁學近似演算法快速計算導體目標電磁散射特性. 物理學報, 63(16), 164202-164202.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔