|
[1] HU H, WEN Y, CHUA T, LI X. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access. 2014;2:652-87. doi: 10.1109/ACCESS.2014.2332453. [2] WANG Y, WANG Z. The Impact of Data Mining on Management Accounting in Big Data Era. Proceedings of Annual Paris Business Research Conference; 2015 August 13-14; France. Paris; 2015. p. 1-11. [3] Bansal S, Rana A. Transitioning from Relational Databases to Big Data. International Journal of Advanced Research in Computer Science and Software Engineering. 2014; 4(1):626-30. [4] Mauro AD, Greco M, Grimaldi M. What is big data? A consensual definition and a review of key research topics. Proceedings of the 4th International Conference on Integrated Information; 2014 September 5-8; Spain, Madrid: AIP Conference; 2015. doi:10.1063/1.4907823. [5] Chandrika M, Parvathy J, Srinidhi BS, Bhandi V, Balaji S. Impact of Big Data and Emerging Research Trends. Proceedings of Computational Systems for Health & Sustainability; 2015 April 17-18; Bangalore, Karnataka, INDIA: 2015. p. 14-7. [6] UC Irvine Machine Learning Repository[Interner]. c2007- [cited 2015 Oct 26]. Available from: https://archive.ics.uci.edu/ml/index.html [7] Ghorpade J, Parande J, Kulkarni M, Bawaskar A. GPGPU PROCESSING IN CUDA ARCHITECTURE. Advanced Computing . 2012;3(1):105-20. doi : 10.5121/acij.2012.3109. [8] Mitchell T (Carnegie Mellon University, School of Computer Science). The Discipline of Machine Learning. Machine Learning Department technical report. (US). 2006 July. Report No.: CMU-ML-06-108. [9] Egghe L, Leydesdorff L. the relation between Pearson's correlation coefficient r and Salton's cosine measure. American Society for Information Science and Technology. 2009;60(5). doi: 10.1016/j.eswa.2012.07.016. [10] Domingos P. A Few Useful Things to Know about Machine Learning. Communications of the ACM. 2012; 55(10):78-87. doi: 10.1145/2347736.2347755. [11] N. Suguna and Dr. K. Thanushkodi. An Improved k-Nearest Neighbor Classification Using Genetic Algorithm. International Journal of Computer Science Issues. 2010;7(4):18–21. [12] Arefin AS, Riveros C, Berretta R, Moscato P. GPU-FS-kNN: A Software Tool for Fast and Scalable kNN Computation Using GPUs. PLoS ONE. 2012;7(8). doi: 10.1371/journal.pone.0044000. [13] Hastie T, Tibshirani R. Discriminant Adaptive Nearest Neighbor Classification. IEEE Transactions on pattern analysis and machine intelligence. 1996;18:607-16. doi: 10.1109/34.506411. [14] Fulekar MH, editors. Bioinformatics: Applications in Life and Environmental Sciences, Springer. 2009. p. 110. [15] Garcia V, Nielsen F. Searching High-Dimensional Neighbours: CPU-Based Tailored Data-Structures Versus GPU-Based Brute-Force Method. Proceedings of Computer Vision/Computer Graphcis Collaboration Techniques and Applications (MIRAGE); 2009 May 4-6; Rocquencourt, France: Springer; 2009;425-36. doi: 10.1007/978-3-642-01811-4_38. [16] Chen J, Fang H, Saad Y. Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection. Machine Learning Research. 2009;10:1989-2012. doi: 10.1145/1577069.1755852. [17] Garcia V, Debreuve E, Barlaud M.Fast k nearest neighbor search using GPU. Proceedings of Computer Vision and Pattern Recognition Workshops, CVPRW '08; 2008 June 23-28; Anchorage, AK; 2008:1-6. doi: 10.1109/CVPRW.2008.4563100. [18] Gou J, Du L, Zhang Y, Xiong T. A New Distance-weighted k-nearest Neighbor Classifier. Information & Computational Science. 2012;9:1429-36 [19] Kaur P, Nishi. A Survey on CUDA. Computer Science & Information Technologies. 2014;5(2):2210-4. [20] Gieseke F, Heinermann J, Oancea C, Igel C. Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. Proceedings of the 31st ICML. 2014, Beijing, China: JMLR: W&CP; 2014. p. 172-80. [21] Cong J, Zou Y. Parallel Multi-level Analytical Global Placement on Graphics Processing Unit. Proceedings of the Computer-Aided Design; 2009 November 2–5; San Jose, California, USA: IEEE; 2009. p. 681–8. [22] Advanced CUDA C [Internet]. Micikevicius P, NVIDIA Corporation; 2009. Available from: http://www.nvidia.com/content/GTC/documents/1029_GTC09.pdf [23] Collet P, Kruger F, Maitre O, editors. Automatic Parallelization of EC on GPGPUs and Clusters of GPGPU Machines with EASEA and EASEA-CLOUD. Massively Parallel Evolutionary Computation on GPGPUs. 2009:35-59. doi: 10.1007/978-3-642-37959-8_3. [24] Ghahramani Z. Unsupervised Learning. Advanced Lectures on Machine Learning: Springer, 2004. p. 72–112. doi:10.1007/978-3-540-28650-9_5 [25] CUDA C Programming Guide [Internet]. NVIDIA Corporation; 2015. Available from: http://docs.nvidia.com/CUDA/CUDA-c-programming-guide/ [26] Khan A, Al-Mouhamed M, Fatayar A, Almousa A, Baqais A, Assayony M. Padding Free Bank Conflict Resolution for CUDA-Based Matrix Transpose Algorithm. Networked and Distributed Computing. 2014;2(3):124-134. Doi: 10.1109/SNPD.2014.6888709. [27] Boyer V, Baz DE. Recent Advances on GPU Computing in Operations Research. Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum; 2013 May 20-24; Cambridge, MA: IEEE; 2013 p. 1778–87. doi: 10.1109/IPDPSW.2013.45. [28] Jablin TB, Prabhu P, Jablin JA, Johnson NP, Beard SR, August DI. Automatic CPU-GPU Communication Management and Optimization. Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation; 2011 June 4-8; New York, USA:ACM;2011. p. 142–151. doi: 10.1145/1993498.1993516. [29] Owens JD, Houston M, Luebke D, Green S, Stone JE, Philips JC. GPU Computing. Proceedings of the IEEE. 2008;96(5):879-899. doi: 10.1109/JPROC.2008.917757 [30] Xie L; The Travelers Companies Inc. The Travelers Companies Inc. KNN Classification and Regression using SAS. Paper SD-09. 2012; [31] Chiang TH, Lo HY, Lin SD. A Ranking-based KNN Approach for Multi-Label Classification. Proceedings of JMLR: Workshop and Conference. 2012;25:81-96. [32] Andoni A, Indyk P. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. Communications of the ACM. 2008;51(1): 117–122. doi: 10.1145/1327452.1327494. [33] Li Q, Kecman V, Salman R. A Chunking Method For Ruclidean Distance Matrix Calculation on Large Dataset Using multi-GPU. Proceedings of the 2010 Ninth ICMLA; 2010 Washington, DC, USA: IEEE; 2010. p. 208–213. doi: 10.1109/ICMLA.2010.38. [34] Holk E, Byrd W, Mahajan N, Willcock J, Chauhan A, Lumsdaine A. Declarative Parallel Programming for GPUs. Tools and Techniques on the Road to Exascale Computing. 2011;22:297-304. doi:10.3233/978-1-61499-041-3-297. [35] Mahe P, Arsac M, Chatellier S, Monnin V, Perrot N, Mailler S, Girard V, Ramjeet M, Surre J, Lacroix B, Belkum AV, Veyrieras JB. Automatic Identification of Mixed Bacterial Species Fingerprints in a MALDI-TOF Mass-Spectrum. Bioinformatics. 2014;30(9):1280-6. doi: 10.1093/bioinformatics/btu022. [36] CUDA Pro Tip: Occupancy API Simplifies Launch Configuration. [Internet]. Harris M. NVIDIA Corporation; 2014, Available from: http://devblogs.nvidia.com/parallelforall/CUDA-pro-tip-occupancy-api-simplifies-launch-configuration/
|