跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀宇廷
研究生(外文):Chi, Yu-Ting
論文名稱:應用於5GHz低功耗之射頻接收機前端電路設計
論文名稱(外文):Design of 5GHz Low Power RF Receiver Font-end Circuits
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Yeh, Mei-Ling
口試委員:林嘉洤黃淑絹
口試委員(外文):Lin, Jia-ChuanHuang, Shu-Chuan
口試日期:2016-01-22
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:電壓控制振盪器低雜訊放大器混頻器
外文關鍵詞:voltage-controlled oscillatorlow noise amplifiermixer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為設計5GHz低功耗之射頻接收機前端電路,其中電路包含電壓控制振盪器、低雜訊放大器和混頻器,使用國家晶片系統設計中心所提供之Agilent Advanced Design System(ADS)軟體進行電路模擬,電路中元件均為TSMC 0.18 m 1P6M CMOS Mixed-Signal模型。

第一顆晶片是電壓控制振盪器(VCO),使用互補式為主架構,結合NMOS與PMOS的優點,使用LC-tank架構和CMOS形式達到低功耗和減少晶片面積以設計電壓控制振盪器。測量的結果,電路在4.6GHz的振盪頻率時,可調頻率範圍為600MHz,相位雜訊在1MHz偏移頻率下為-111.2dBc/Hz,此電路FOM值為-181.7 dBc/Hz,功率消耗為2.1mW,晶片面積為0.852*0.65 mm2。

第二顆晶片是低雜訊放大器(LNA),主架構是疊接式架構並在電路中加入一組電流鏡來達到低功耗,測量的結果,顯示電路在5GHz的振盪頻率時,最大增益(S21)為8.75dB,輸入端反射損耗(S11)與輸出端反射損耗(S22)分別為-13dB和-9dB,最小雜訊增益為5.8dB,此電路P1dB值與IIP3值分別為-20 dBm與-15dBm,在輸入電壓為1V時,功率消耗為4.2mW,此低雜訊放大器晶片面積為1.5*1.0 mm2。

第三顆晶片是混頻器(Mixer),採用單端平衡式架構,在轉導級增加兩顆電晶體,使其操作在飽和與線性區之間,類似成一顆等效電阻,增加線性度,在雜訊部分使用雜訊抵銷架構,使其降低雜訊。模擬結果顯示,在5GHz時,轉換增益為8.4dB,雜訊指數為25dB,P1dB為-16dBm,IIP3為-10dBm,在輸入電壓1V時,功率消耗為8mW,晶片面積為1.3*0.75 mm2
In this thesis, we design 5GHz low power RF receiver font-end circuits, which consist of a voltage-controlled oscillator (VCO), a low noise amplifier (LNA) and a mixer. The circuits are simulated with the Agilent Advanced Design System (ADS) software supported by National Chip Implementation Center (CIC), and circuit components use the TSMC 0.18 um 1P6M CMOS Mixed-Signal models.

The first chip is a voltage-controlled oscillator (VCO) which uses the complementary architecture as the main feature to combine the advantages of NMOS and PMOS. The circuit uses LC tank and CMOS structure to achieve low power and decrease the wafer area. The measurement results show that the tuning range is 600MHz, the phase noise is -111.2 dBc/Hz at 1MHz offset from the carrier frequency of 4.6 GHz. The FOM can achieve -181.7 dBc/Hz, the power consumption is 2.15mW, and the chip area is 0.852*0.65 mm2.

The second chip is a low noise amplifier (LNA) which adopts cascode architecture and current mirror to achieve the low power. The measurement results show that the maximum power gain (S21) is 8.75 dB. The input reflection coefficient S11 and output reflection coefficient S22 are lower than -13 dB and -9 dB, respectively. The minimum noise figure is 5.8 dB from the carrier frequency of 5 GHz. The P1dB and input third-order intercept point (IIP3) are -20dBm and -15dBm. The power consumption is 4.2mW at 1V supply voltage. This LNA occupies an area of 1.5*1.0 mm2.

The third chip is a mixer with the single-balanced architecture. In the transconductance stage, we add two transistors operating between the saturation and linear region which are equivalent to a resistor to improve the linearity. In noise part, we use noise cancellation technique to reduce the noise. The simulation results show that the conversion gain is 8.4dB, the noise figure is 25dB, the P1dB is -16dBm, the IIP3 is -10dBm from the carrier frequency of 5 GHz. The power consumption is 8mW at 1V supply voltage, and the chip area is 1.3*0.75 mm2.
摘要...........................................I
Abstract......................................II
目錄..........................................III
圖目錄.........................................V
表目錄........................................VII
第一章 緒論..................................1
1.1 研究動機.................................1
1.2 射頻接收機架構簡介紹.......................1
1.3 IEEE 802.11AC 系統介紹....................4
1.4 論文架構..................................5
第二章 電壓控制振盪器..........................6
2.1 電壓控制振盪器簡介.........................6
2.2 電壓控制振盪器原理與架構....................6
2.2.1 回授分析法..............................6
2.2.2 負電阻分析法............................7
2.2.3 環形振盪器 (Ring Oscillator)............8
2.2.4 LC諧振振盪器 (LC-tank Oscillator........9
2.3 電壓控制振盪器重要參數.....................11
2.3.1 相位雜訊 (Phase Noise)..................11
2.3.2 可調頻率範圍 (Tuning Range).............12
2.3.3 輸出功率 (Output Power).................13
2.3.4 消耗功率 (Power Consumption)............13
2.4 低功耗電壓控制振盪器設計....................13
2.4.1 電路架構................................13
2.4.2 模擬結果................................16
2.4.3 量測結果................................26
2.4.4 結論....................................30
第三章 低雜訊放大器............................31
3.1 低雜訊放大器簡介...........................31
3.2 低雜訊放大器特性參數........................31
3.2.1 S參數 (S parameter).....................31
3.2.2 穩定度..................................33
3.2.3 雜訊指數................................35
3.2.4 1dB增益壓縮點...........................36
3.3 低雜訊放大器架構介紹.......................37
3.4 低功耗低雜訊放大器之設計....................39
3.4.1 電路架構................................40
3.4.2 模擬結果................................42
3.4.3 量測結果................................52
3.4.4 結論....................................55
第四章 混頻器.................................56
4.1 混頻器簡介................................56
4.2 混頻器原理................................57
4.3 混頻器架構................................60
4.3.1 被動式混頻器............................60
4.3.2 主動式混頻器............................60
4.4 混頻器重要參數............................62
4.4.1 轉換增益 (Conversion Gain).............62
4.4.2 輸入端三階交互調變交叉點 (IIP3)..........62
4.4.3 隔離度.................................63
4.5 低功耗混頻器設計..........................64
4.5.1 電路架構...............................64
4.5.2 模擬結果...............................67
4.5.3 結論...................................76
第五章 總結與未來展望..........................77
參考文獻........................................78

[1]https://etds.stu.edu.tw/etdservice/detail?&etdun1=U0084-0808201215163800&n=1&list=1%25E3%2580%2581&query_field1=keyword&&query_word1=%25E7%2584%25A1%25E7%25B7%259A%25E5%259F%25BA%25E5%259C%25B0%25E5%258F%25B0&&start=1&end=1
[2]http://nccur.lib.nccu.edu.tw/bitstream/140.119/35291/5/36003805.pdf
[3]張盛富, 張嘉展, 無線通訊射頻晶片模組設計-射頻系統篇. 全華圖書, March 2009.
[4]http://www.ni.com/white-paper/13909/zht/#top
[5]http://www.techbang.com/posts/16805-3-times-double-speed-80211ac-hits-standard-and-optional-bandwidth-comprehensive-analysis-of-applied-technology-computer-king-115-cover-story-p48?page=2
[6]袁帝文, 王岳華, 謝孟翰, 王弘毅, 高頻通訊電路設計. 高立圖書, June 2009
[7]Frank Ellinger, Radio Frequency Integrated Circuits and Technologies. Springer, 2007.
[8]C. P. Liang, T. J. Huang, P. Z. Rao, and S. J. Chung, “Low Power VCO with Phase-Noise Improvement in 0.18 mm CMOS Technology,” IEEE Electronics Letters, vol. 46, no. 20, 2010.
[9]Meng Ting Hsu, “Design a 5GHz Low Power CMOS LC VCO for IEEE 802.11a Application,” Asia-Pacific Microwave Conference Proceedings (APMC), 2010.
[10]Ming Da Tsai, Yi Hsien Cho, and Huei Wang Senior, “A 5GHz Low Phase Noise Differential Colpitts CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, 2005.
[11]Kang Chun Peng, and Chan Hung Lee, “A 5GHz CMOS Quadrature VCO with Precise Quadrature Phase,” Asia-Pacific Microwave Conference Proceedings (APMC), 2012.
[12]Meng Ting Hsu, and Po Hung Chen, “5GHz Low Power CMOS LC VCO for IEEE 802.11a Application,” Asia-Pacific Microwave Conference Proceedings (APMC), 2011.
[13]B. Razavi, RF Microelectronics. Prentice Hall, 1998.
[14]Behzad Razavi, Design of Analog CMOS Integrated Circuits. McGrawHill, 2011.
[15]郭信智, 應用於60-GHz CMOS毫米波射頻接收機前端電路之研製. 國立成功大學電腦與通信工程研究所碩士論文, Aug. 2008.
[16]Meng Ting Hsu, Jing Cheng Yang, and Jyun Ren Jhan, “Design of UWB LNA Using RC Feedback Technology,” Asia-Pacific Microwave Conference (APMC), 2014.
[17]Meng Ting Hsu, Yu Chang Hsieh, and An Cheng Ou, “Design of Low power UWB CMOS LNA Using RC Feedback and Body-Bias Technology,” IEEE 10th International Conference on ASIC (ASICON), 2013.
[18]H. L. Kaoa, Albert Chinb, K. C. Changb, and S. P. McAlisterc, “A Low-Power Current-Reuse LNA for Ultra-Wideband Wireless Receivers from 3.1 to 10.6 GHz,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2007.
[19]Kang Chun Peng, and Chan Hung Lee, “A 4–10.6 GHZ Low Power LNA with Dual Reactive Feedback and Very Low Noise Figure,” Iranian Conference on Electrical Engineering (ICEE), 2012.
[20]Rajesh Khatri, D. K. Mishra, and Preet Jain, “A Low Power Low Noise Amplifier for Ultra Wideband Applications,” International Conference on IEEE Communication Systems and Network Technologies (CSNT), 2012.
[21]許漢州, 5.2GHz CMOS射頻接收器之前級電路設計. 國立臺灣海洋大學研究所碩士論文, June 2004.
[22]施銘現, 5.8GHz RFID之射頻前端接收器設計. 南台科技大學研究所碩士論文, July 2006.
[23]http://web.nchu.edu.tw/~ycchiang/RFIC/RFIC-SpectreRF-Unit-3.pdf
[24]H. Kanaya, N. Koga, M. A. Abdelghany, R. K. Pokharel, and K. Yoshida, “Low Flicker-Noise and Low Leakage Direct Conversion CMOS Mixer for 5GHz Application”, Microwave Conference, pp. 1631-1634, Dec 2009.
[25]S. A. Z Murad, M. F. Ahmad, M. Mazalan, M. M Shahimin, S. A. A Rais, and M. N Norizan, “A Design of 5.2 GHz CMOS Up Conversion Mixer with IF Input Active Balun,” IEEE Symposium on Wireless Technology and Applications, 2011.
[26]Wen Shan Hxiao, and Zhi Ming Lin, “A 1 V 11.6-dBm IIP3 Up Conversion Mixer for UWB Wireless System”, 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009.
[27]Ching Piao Liang, Pei Zong Rao, Tien Jien Huang, and Shyh Jong Chung, “A 2.45/5.2 GHz Image Rejection Mixer With New Dual-Band Active Notch Filter”, IEEE Microwave Wireless Component Letter, vol. 19, pp. 716-718, Nov 2009.
[28]Steve Hung Lung Tu1, and Sky Chang Hung Chen, “A 5.26 GHz CMOS Up Conversion Mixer for IEEE 802.11a WLAN,” 4th IEEE International Conference on Circuits and Systems for Communications, ICCSC, 2008.
[29]許念祖, 利用雜訊抵銷技術之低雜訊放大器設計與分析. 國立中山大學電機工程系研究所碩士論文, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊