(3.80.6.131) 您好!臺灣時間:2021/05/17 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳貴彰
研究生(外文):Wu, Kui–Khang
論文名稱:一種基於晚期肌萎縮側索硬化症腦機界面FC1腦波邊際頻率能量分佈分析
論文名稱(外文):Energy Distributions of Marginal Frequency of BCI FC1 EEG Signals for LSALS
指導教授:林進豐林進豐引用關係
指導教授(外文):Lin, Chin-Feng
口試委員:鄧俊宏張順雄林進豐
口試委員(外文):Deng, Jun-HongChang, Shun-HsiungLin, Chin-Feng
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:44
中文關鍵詞:邊際頻率δ波FC1P300腦機介面晚期肌萎縮側索硬化症。
外文關鍵詞:marginal frequencyδ waveFC1P300brain–computer interfaceLate- stage Amyotrophic Lateral Sclerosis.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文,應用希爾伯特黃轉換時頻分析方法,分析腦機介面FC1通道晚期肌肉萎縮側索硬化症患者腦波特徵,分析十個晚期肌肉萎縮側索硬化症患者樣本,分析十個正常者樣本,具14個IMF的樣本定義為類型一,15個IMF的樣本定義為類型二,正常者類型一在P300腦機介面腦波訊號的平均能量,IMF14和IMF13皆分布於0-0.5Hz,平均能量參考總能量比例分別為12.50%及5.09%,P300腦機介面腦波訊號的平均能量IMF13、IMF12及IMF10位於δ波,平均能量參考總能量比例分別為4.30%、4.83%、5.76%,正常者類型一在P300腦機介面腦波訊號的平均能量比值,IMF10和IMF9位於θ波,平均能量參考總能量比例分別為4.00%、2.69%。LSALS類型一在P300腦機介面腦波訊號的平均能量比值IMF14和IMF13位於0-0.5Hz,平均能量參考總能量比例分別為17.00%及6.96%,LSALS類型一在P300腦機介面腦波訊號的平均能量比值IMF14、IMF13和IMF12位於δ,平均能量參考總能量比例分別為2.54%、10.22%及5.41%。正常者類型二在P300腦機介面腦波訊號的平均能量比值IMF15和IMF14皆位於0-0.5Hz,平均能量參考總能量比例分別為23.11%、1.96%,正常者類型二在P300腦機介面腦波訊號的平均能量IMF14、IMF13、IMF12、IMF11及IMF10皆位於δ波,平均能量參考總能量比例分別為2.46%、13.92%、13.57%、10.50%及9.52%。LSALS類型二在P300腦機介面腦波訊號的平均能量IMF15和IMF14皆位於0-0.5Hz,平均能量參考總能量比例分別為41.33%、10.99%,LSALS類型二在P300腦機介面腦波訊號的平均能量比值IMF14、IMF13、IMF12及IMF11位在θ波,平均能量參考總能量比例分別為6.84%、5.74%、6.49%及2.01%,此研究討論腦機介面FC1通道,LSALS腦波訊號邊際頻率能量分布與比值。
In the thesis, the Hilbert-Huang transform (HHT) based features of the P300 brain-computer interface (BCI) FC1 electroencephalography (EEG) signals for a patientwith Late-stage Amyotrophic Lateral Sclerosis (LSALS) were analyzed. Ten samplesof a LSALS patient, and ten samples of normal observer were analyzed. The analysissamples with 14 IMFs were denoted as class I, and the analysis samples with 15 IMFswere denoted as class II. The average ratios of the energy of P300-based BCI with theclass I FC1 EEG signals of a normal observer to its refereed total energy for IMF14and IMF13 in the 0-0.5 Hz were 12.50%, and 5.09%, respectively. The average ratiosof the energy of P300-based BCI with the class I FC1 EEG signals of a normalobserver to its refereed total energy for IMF13, IMF12 and IMF10 in the δ wave were4.30%, 4.83%, and 5.76%, respectively. The average ratios of the energy of P300-based BCI with the class I FC1 EEG signals of a normal observer to its refereed totalenergy for IMF10, and IMF9 in thewave were 4.00%, and 2.69%, respectively. Theaverage ratios of the energy of P300-based BCI with the class I FC1 EEG signals of aLSALS patient to its refereed total energy for IMF14 and IMF13 in the 0-0.5 Hz were17.00%, and 6.92%, respectively. The average ratios of the energy of P300-based BCIwith the class I FC1 EEG signals of a LSALS patient to its refereed total energy forIMF14, IMF13, and IMF12 in the wave were 2.54%, 10.22%, and 5.41%,respectively. The average ratios of the energy of P300-based BCI with the class IIFC1 EEG signals of a normal observer to its refereed total energy for IMF15 andIMF14 in the 0-0.5 Hz were 23.11%, and 1.96%, respectively. The average ratios ofthe energy of P300-based BCI with the class II FC1 EEG signals of a normal observerto its refereed total energy for IMF14, IMF13, IMF12, IMF11, and IMF10 in thewavewere 2.46%, 13.92%, 13.57%, 10.50%, and 9.12%, respectively. The average ratios ofthe energy of P300-based BCI with the class II FC1 EEG signals of a LSALS patientto its refereed total energy for IMF15 and IMF14 in the 0-0.5 Hz were 41.33%, and10.99%, respectively. The average ratios of the energy of P300-based BCI with theclass II FC1 EEG signals of a LSALS patient to its refereed total energy for IMF14,IMF13, IMF12, and IMF11 in thewave were 6.84%, 5.74%, 6.49%, and 2.01%,respectively. The ratios of energy distributions of marginal frequency of BCI FC1EEG signals for a LSALS patient were studied.
摘要…………………………………………………………………………………………………………………I
Abstract……………………………………………………………………………………………………II
目次…………………………………………………………………………………………………………………Ⅲ
圖目次……………………………………………………………………………………………………………Ⅳ
表目次……………………………………………………………………………………………………………Ⅴ
詞彙或特殊符號說明………………………………………………………………………………Ⅵ
第一章 緒論………………………………………………………………………………………………6
1-1研究動機與目的 ………………………………………………………………………………6
1-2研究方法………………………………………………………………………………………………6
1-3參考文獻研習……………………………………………………………………………………6
第二章 研究背景與研究原理……………………………………………………………8
2-1 LSALS患者與FC1腦波通道………………………………………………………8
2-2實驗數據資料庫………………………………………………………………………………8
2-3希爾伯特-黃轉換……………………………………………………………………………8
第三章 LSALS患者與正常者腦機界面FC1腦波特徵分析……10
第四章 正常者與LSALS患者腦機界面FC1MF分析…………………35
4-1 正常者與LSALS患者腦機界面 FC1MF能量分布 ……………35
4-2 正常者與LSALS患者腦機界面FC1殘餘函數(Reduire Frequency, RF)之 MF能量分布……………………………………………………………………………38
4-3與外傷性腦和脊隨損傷患者之EEG及IMF比較……………………39
第五章 結論與未來展望………………………………………………………………………42
參考文獻………………………………………………………………………………………………………43


[1]U.Hoffnann , J.Vesin , T.Ebrahimi , et al. (2008) “An efficient P300-based brain-computer interface for disabled subjects,”J Neurosci Methods, 167(1):115-25.
[2]H. Sharabaty;J. Martin;B. Jammes, et al. (2006) “Alpha-and-Theta-Wave-Localisation-Using-Hilbert-Huang-Transform,”Proceeding of International Conference on Information & Communication Technologies, pp.1159-1164.
[3]Y. Li,F. Yingle, L.Gu, et al. (2009)“Sleep Stage Classificationbased on EEG Hilbert-HuangTransform,” Proceeding of International Conference on Technologies on Industrial Electronics and Applications,pp.3676-3681.
[4]Y.Li,H.Y. Loong , L.Wentai(2014) “Comparison Study of Seizure Detection Using StationaryandNonstationary Methods,”Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society,pp.3272-3275.
[5]劉昱皓,「一種基於晚期脊萎縮側索硬化症P300腦機介面F3和F4腦波IMFs時頻特徵分析」,國立台灣海洋大學電機工程所碩士論文,中華民國105年。
[6]Z.Zhang, Y.Leng, Y.Yang, et al. (2014)“Comparative study on wavelet coh-erence and HHT coherence,”Proceeding of International Conference on Image and Signal Processing , pp. 867 - 872
[7]Q. Han(2011) “Distinction non-stationary pulse wave signals withHHT Method,”Proceeding of International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), pp.3317 – 3320.
[8] C.F. Lin, and J.D. Zhu (2012) “Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications,” Journal of Engineering in Medicine, 226(3):208-216.
[9]C. F. Lin, J. Y. Su, and H. M. Wang (2015) “Hilbert-Huang transformation based analyses of FP1, FP2, and Fz electroencephalogram signals in alcoholism,” Journal of Medical Systems, 39:83.
[10]C.F. Lin, S. W. Yen, S. H. Chang, et al. (2011) An HHT-Based Time-Frequency Scheme for Analyzing the EEG Signals of Clinical Alcoholics. Nova Science Publishers, Inc. New York. 1-26.
[11]J. D. Zhu, C. F. Lin, S. H. Chang, et al. (2015) “Analysis of Spike Waves in Epilepsy Using Hilbert-Huang Transform,” Journal of Medical Systems, 39:170.
[12]C. F. Lin, B. H. Yang, T. I. Peng, et al. (2011) “Sharp Wave Based HHT Time-frequency Features with Transmission Error,” Advance in Telemedicine: Technologies, Enabling Factors and Scenarios, Intech Science Publishers, Austria, pp.149-164.
[13]C. F. Lin, J. D. Zhu, S. H. Chang, et al. (2016) “HHT-Based Time-frequency Features in the Berardius Baird Whistles,” Advanced Materials Manufacturing, Physics, Mechanics and Applications, Springer, pp. 687-693.
[14] C. F. Lin, T. K. Chan, C. C. Wen, et al. (2015) “Hilbert-Huang Transform Based Features for Underwater Voice (II) Transmission,” Advanced Materials Studies and Applications”, Nova Science Publishers, USA, 487-498.
[15] C. F. Lin, K. J. Hsiao, C. C. Wen, et al. (2014) “Hilbert-Huang Transform Based Instantaneous Frequency Features for Underwater Voice (I) Transmission,”Advanced Materials,”Physics, Mechanics and Applications, Springer, USA, pp.305-310.
[16]肌萎缩性脊髓侧索硬化症,維基百科
[17]N. E. Huang, Z. Shen, S. R. Long, et al. (1998)“The Empirical Mode Decomposition and the HilbertSpectrum for Nonlinear and NonstationaryTime Series Analysis,”Proc.R. Soc. Lond. A, pp.903-995.
[18]Huang NE, Hen SSP (2005) Hilbert-Huang Transform and its Applications. World ScientificPublishing Co.,Singapore.
[19]10-20 system(EEG),維基百科

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top