(3.236.214.19) 您好!臺灣時間:2021/05/09 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:魏杏潔
研究生(外文):Wei, Shing-Jie
論文名稱:整合磁珠及螢光微流道用於DNA檢測生物晶片之研究
論文名稱(外文):A Study of Microfluidic Biochip Integrated with Magnetic Beads and Fluorescence for DNA Detection
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chang, Chung-Cheng
口試委員:鄭岫盈蔡榮輝陳昭德陳柏台
口試委員(外文):Cheng, Shiou-YingTsai, Jung-HuiChen, Jau-DerChen, Pei-Tai
口試日期:2015-12-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:47
中文關鍵詞:微流道DNA雜合雷射激發螢光指叉式電極PDMS磁珠
外文關鍵詞:Microfluidic channelDNA hybridizationLaser Induce Fluorescenceinterdigitated electrodePDMSmagnetic beads
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
目錄
第一章 緒論 1
1-1前言 1
1-2 文獻回顧 1
1-3研究動機與目的 2
1-4論文大綱 3
第二章 微流體晶片 4
2-1前言 4
2-2材料特性分析 4
2-2-1 PDMS材料特性分析 4
2-2-2 SU-8厚膜光阻特性分析 5
2-3指叉式電極簡介 5
2-4指叉式電極製程 6
2-5指叉式電極製程結果分析 7
2-6微流體晶片設計與製程 7
2-7微流體晶片實驗結果分析 7
2-8結果與討論 8
第三章 檢測系統 9
3-1前言 9
3-2螢光激發原理 10
3-3螢光檢測系統架構 10
3-4磁珠檢測系統 11
3-5結果與討論 12
第四章 實驗分析 13
4-1前言 13
4-2螢光檢測系統測試 14
4-3聚合酶連鎖反應 14
4-4 螢光檢測結果分析 16
4-5 磁珠檢測結果分析 16
4-6 結論 17
第五章 總結 18
5-1總結 18
5-2未來展望 18
參考文獻 19


[1]D. J. Beebe, G. A. Mensing, and G. M. Walker, "PHYSICS AND APPLICATIONS OF MICROFLUIDICS IN BIOLOGY," Annual Review of Biomedical Engineering, vol. 4, pp. 261-286, 2002.
[2]A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[3]P. F. Man, D. K. Jones, and C. H. Mastrangelo, "Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips," in Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop on, 1997, pp. 311-316.
[4]Y. Xia and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[5]J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, et al., "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[6]G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, "SOFT LITHOGRAPHY IN BIOLOGY AND BIOCHEMISTRY," Annual Review of Biomedical Engineering, vol. 3, pp. 335-373, 2001.
[7]J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, "Monolithic Capillary Electrophoresis Device with Integrated Fluorescence Detector," Analytical Chemistry, vol. 73, pp. 1622-1626, 2001.
[8]J. Krüger, K. Singh, A. O'Neill, C. Jackson, A. Morrison, and P. O'Brien, "Development of a microfluidic device for fluorescence activated cell sorting," Journal of Micromechanics and Microengineering, vol. 12, p. 486, 2002.
[9]D. Erickson and D. Li, "Integrated microfluidic devices," Analytica Chimica Acta, vol. 507, pp. 11-26, 2004.
[10]J. Khan, L. H. Saal, M. L. Bittner, Y. Chen, J. M. Trent, and P. S. Meltzer, "Expression profiling in cancer using cDNA microarrays," ELECTROPHORESIS, vol. 20, pp. 223-229, 1999.
[11]G. MacBeath and S. L. Schreiber, "Printing Proteins as Microarrays for High-Throughput Function Determination," Science, vol. 289, pp. 1760-1763, 2000.
[12]N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, et al., "Comparison between Different Strategies of Covalent Attachment of DNA to Glass Surfaces to Build DNA Microarrays," Analytical Biochemistry, vol. 280, pp. 143-150, 2000.
[13]R. Wacker, H. Schröder, and C. M. Niemeyer, "Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin–biotin attachment: a comparative study," Analytical Biochemistry, vol. 330, pp. 281-287, 2004.
[14]M. Bartosiewicz, M. Trounstine, D. Barker, R. Johnston, and A. Buckpitt, "Development of a Toxicological Gene Array and Quantitative Assessment of This Technology," Archives of Biochemistry and Biophysics, vol. 376, pp. 66-73, 2000.
[15]L. R. Allain, D. N. Stratis-Cullum, and T. Vo-Dinh, "Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies," Analytica Chimica Acta, vol. 518, pp. 77-85, 2004.
[16]R. Jornsten, Y. Bin, W. Wei, and K. Ramchandran, "Compression of cDNA and inkjet microarray images," in Image Processing. 2002. Proceedings. 2002 International Conference on, 2002, pp. 961-964 vol.3.
[17]A. Rasmussen and M. E. Zaghloul, "CMOS microfluidic fabrication technology for biomedical applications," in Circuits and Systems, 1999. 42nd Midwest Symposium on, 1999, pp. 791-794 vol. 2.
[18]A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, "Simulation and optimization of a microfluidic flow sensor," Sensors and Actuators A: Physical, vol. 88, pp. 121-132, 2001.
[19]S. Tung, J. W. Kim, A. Malshe, C. C. Lee, and R. Pooran, "A cellular motor driven microfluidic system," in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, 2003, pp. 678-681 vol.1.
[20]D. A. Czaplewski, B. R. Ilic, M. Zalalutdinov, W. L. Olbricht, A. T. Zehnder, H. G. Craighead, et al., "A micromechanical flow sensor for microfluidic applications," Microelectromechanical Systems, Journal of, vol. 13, pp. 576-585, 2004.
[21]J. Gluckstad, V. R. Daria, and P. J. Rodrigo, "The potential for an all-optically assembled, powered and controlled micro-fluidic lab-on-a-chip system," in Microprocesses and Nanotechnology Conference, 2003. Digest of Papers. 2003 International, 2003, pp. 204-205.
[22]G. Medoro, N. Manaresi, A. Leonardi, L. Altomare, M. Tartagni, and R. Guerrieri, "A lab-on-a-chip for cell detection and manipulation," Sensors Journal, IEEE, vol. 3, pp. 317-325, 2003.
[23]A. Kumar and G. M. Whitesides, "Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching," Applied Physics Letters, vol. 63, pp. 2002-2004, 1993.
[24]E. M. Southern, "Detection of specific sequences among DNA fragments separated by gel electrophoresis," Journal of Molecular Biology, vol. 98, pp. 503-517, 1975.
[25]E. Thrush, O. Levi, K. Wang, J. S. Harris, and S. J. Smith, "Integrated semiconductor fluorescent detection system for biochip and biomedical applications," in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, 2002, pp. 374-379.
[26]L. A. Corp, J. E. McMurtrey, E. M. Middleton, C. L. Mulchi, E. W. Chappelle, and C. S. T. Daughtry, "Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sensing of Environment, vol. 86, pp. 470-479, 2003.
[27]L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, "An integrated fluorescence detection system for lab-on-a-chip applications," Lab on a chip, vol. 7, pp. 27-29, 2007.
[28]K. Mo, "Integrated Fluorescence Detection System for Lab on a Chip Devices," 2007.
[29]T. D. James, M. G. Scullion, P. C. Ashok, A. Di Falco, K. Dholakia, and T. F. Krauss, "Valve controlled fluorescence detection system for remote sensing applications," Microfluidics and Nanofluidics, vol. 11, pp. 529-536, 2011.
[30]M. Yao, G. Shah, and J. Fang, "Highly sensitive and miniaturized fluorescence detection system with an autonomous capillary fluid manipulation chip," micromachines, vol. 3, 2012.
[31]C. F. Carlborg, T. Haraldsson, M. Cornaglia, G. Stemme, and W. van der Wijngaart, "A High-Yield Process for 3-D Large-Scale Integrated Microfluidic Networks in PDMS," Microelectromechanical Systems, Journal of, vol. 19, pp. 1050-1057, 2010.
[32]Z. Zhikun, Y. Ping, D. Zaili, S. Tung, J. Hohnbaum, B. Srinivasan, et al., "Insulin detection based on a PDMS microfluidic system," in Nano/Molecular Medicine and Engineering (NANOMED), 2010 IEEE 4th International Conference on, 2010, pp. 112-116.
[33]Y. Shuai, Q. Yi, L. Te, Z. Zhibin, Y. Hao, L. Lei, et al., "Fabrication of PDMS microfluidic chip used in Ultraviolet integrated biological chip," in Optoelectronics and Microelectronics (ICOM), 2012 International Conference on, 2012, pp. 553-555.
[34]C. H. Lin, C. H. Chao, and C. W. Lan, "Low azeotropic solvent for bonding of PMMA microfluidic devices," Sensors and Actuators B: Chemical, vol. 121, pp. 698-705, 2007.
[35]L. Yi-Chung, W. Yuan-Hsun, H. Chia-Sheng, L. Hong-Wen, L. Chi-Hung, L. Jengping, et al., "Sub-Microfabrication of Protein Micropatterns for Cell Biology Applications," in MEMS, NANO and Smart Systems, 2004. ICMENS 2004. Proceedings. 2004 International Conference on, 2004, pp. 226-232.
[36]D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, "Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility," Microelectron. Eng., vol. 85, pp. 1289-1293, 2008.
[37]Polymeric Cantilever-Material and processing Probes. Available: http://www2.mic.dtu.dk/research/bioprobes/SU8/SU8-Material.htm
[38]H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: a low-cost negative resist for MEMS," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 7, pp. 121-124, 1997.
[39]L. Dellmann, S. Roth, C. Beuret, G. A. Racine, H. Lorenz, M. Despont, et al., "Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications," in Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference on, 1997, pp. 641-644.
[40]Gas Microstructure Radiation Detectors-SU8 photosensitive epoxy. Available: http://www.cnm.es/projects/microdets/su8.htm
[41]H.-K. Chang and Y.-K. Kim, "UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole," Sensors and Actuators A: Physical, vol. 84, pp. 342-350, 2000.
[42]C.-H. Lin, G.-B. Lee, B.-W. Chang, and G.-L. Chang, "A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist," Journal of Micromechanics and Microengineering, vol. 12, pp. 590-597, 2002.
[43]L. Yi-Chung, H. Chia-Sheng, W. Hsu, and W. Chaoen, "Neural Guidance by Open-Top SU-8 Microfluidic Channel," in MEMS, NANO and Smart Systems, 2004. ICMENS 2004. Proceedings. 2004 International Conference on, 2004, pp. 671-674.
[44]S. M. Westwood, S. Jaffer, O. A. Lui, and B. L. Gray, "Thick SU-8 and PDMS Three-Dimensional Enclosed Channels for Free-Standing Polymer Microfluidic Systems," in Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on, 2007, pp. 12-15.
[45]G. Honglei, Z. Ping, X. Gaozhi, Z. Zhiyi, and Y. Jianping, "Optical Manipulation of Microparticles in an SU-8/PDMS Hybrid Microfluidic Chip Incorporating a Monolithically Integrated On-Chip Lens Set," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 16, pp. 919-926, 2010.
[46]J. Bico, U. Thiele, and D. Quéré, "Wetting of textured surfaces," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, pp. 41-46, 2002.
[47]H. Yu, O. Balogun, B. Li, T. W. Murray, and X. Zhang, "Fabrication of three-dimensional microstructures based on singled-layered SU-8 for lab-on-chip applications," Sensors and Actuators A: Physical, vol. 127, pp. 228-234, 2006.
[48]M. Han, L. Woonseob, L. Sung-Keun, and S. S. Lee, "Fabrication of 3D microstructures with inclined/rotated UV lithography," in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 2003, pp. 554-557.
[49]A. L. Newman, K. W. Hunter, and W. D. Stanbro., "The capacitive affinity sensor: a new biosensor," The Second International Meeting on Chemical Sensors, pp. 596-598, 1986.
[50]A. Balasubramanian, B. Bhuva, R. Mernaugh, and F. R. Haselton, "Si-based sensor for virus detection," in Sensors, 2003. Proceedings of IEEE, 2003, pp. 299-303.
[51]S. M. Radke and E. C. Alocilja, "Design and fabrication of a microimpedance biosensor for bacterial detection," Sensors Journal, IEEE, vol. 4, pp. 434-440, 2004.
[52]L. Moreno-Hagelsieb, G. Laurent, R. Pampin, D. Flandre, J. P. Raskin, B. Foultier, et al., "On-Chip RF Detection of DNA Hybridization Based on Interdigitated Al/Al2O3 Capacitors," in Solid-State Device Research Conference, 2006. ESSDERC 2006. Proceeding of the 36th European, 2006, pp. 125-128.
[53]科學Online 科技部高瞻自然科學教學資源平台. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=8617
[54]Z. Zhang, K. T. V. Grattan, and A. W. Palmer, "Sensitive Fibre Optic Thermometer Using Cr:LiSAF Fluorescence For Bio-Medical Sensing Applications," in Optical Fiber Sensors, Monterey, CA, 1992, pp. 93-96.
[55]P. A. E. Piunno, U. J. Krull, R. H. E. Hudson, M. J. Damha, and H. Cohen, "Fiber optic biosensor for fluorimetric detection of DNA hybridization," Analytica Chimica Acta, vol. 288, pp. 205-214, 1994.
[56]P. A. E. Piunno, U. J. Krull, R. H. E. Hudson, M. J. Damha, and H. Cohen, "Fiber-Optic DNA Sensor for Fluorometric Nucleic Acid Determination," Analytical Chemistry, vol. 67, pp. 2635-2643, 1995.
[57] H. Su, P. Williams, and M. Thompson, "Platinum Anticancer Drug Binding to DNA Detected by Thickness-Shear-Mode Acoustic Wave Sensor," Analytical Chemistry, vol. 67, pp. 1010-1013, 1995.
[58]K. M. Millan, A. Saraullo, and S. R. Mikkelsen, "Voltammetric DNA Biosensor for Cystic Fibrosis Based on a Modified Carbon Paste Electrode," Analytical Chemistry, vol. 66, pp. 2943-2948, 1994.
[59]Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami, and K. Makino, "Hybridization of nucleic acids immobilized on a quartz crystal microbalance," Journal of the American Chemical Society, vol. 114, pp. 8299-8300, 1992.
[60]H. Kudo, K. Miyajima, D. Takahashi, T. Arakawa, H. Saito, K. Mitsubayashi, et al., "Fiber optic bio-sniffer (biochemical gas sensor) using UV-LED light for monitoring ethanol vapor with high sensitivity & selectivitiy," in Sensors, 2009 IEEE, 2009, pp. 1955-1958.
[61]H. J. Watts, D. Yeung, and H. Parkes, "Real-time detection and quantification of DNA hybridization by an optical biosensor," Analytical Chemistry, vol. 67, pp. 4283-4289, 1995.
[62]A. J. Thiel, A. G. Frutos, C. E. Jordan, R. M. Corn, and L. M. Smith, "In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces," Analytical Chemistry, vol. 69, pp. 4948-4956, 1997.
[63] T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Analytical Chemistry, vol. 66, pp. 3379-3383, 1994.
[64]L. Hsin-hung and H. Chih-Wen, "COS: A Configurable OS for Embedded SoC Systems," in Embedded and Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE International Conference on, 2006, pp. 242-245.
[65]D. Tomanek, "What is PSoC," in Applied Electronics (AE), 2010 International Conference on, 2010, pp. 1-4.
[66]I. S. Bajwa and M. A. Chaudhary, "A Language Engineering System for Graphical User Interface Design (LESGUID): A Rule based Approach," in Information and Communication Technologies, 2006. ICTTA '06. 2nd, 2006, pp. 3582-3586.
[67]G. R. Wang, J. Guo, Y. Lin, J. Feng, J. Wei, Y. Wang, et al., "Laser-induced fluorescence photobleaching anemometer for flow velocity measurement in sub-microscale fluidic channels," in LEOS Summer Topical Meetings, 2006 Digest of the, 2006, pp. 34-35.
[68]ThermoFisher Scientific. Available: https://www.thermofisher.com/tw/zt/home/brands/invitrogen.html
[69]B. R. Mohanty and P. K. Sahoo, "Edwardsiellosis in fish: a brief review," Journal of Biosciences, vol. 32, pp. 1331-1344, 2007

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔