跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭智義
研究生(外文):Peng, Chih-I
論文名稱:三相四開關變頻供電型同步磁阻電動機驅動系統之改良型預測電流控制器設計與研製
論文名稱(外文):Design and Implementation of An Improved Predictive Current Controller for Four-Switch Three-Phase Inverter-Fed Synchronous Reluctance Motor Drive systems
指導教授:林正凱林正凱引用關係
指導教授(外文):Lin, Cheng Kai
口試委員:賴炎生黃仲欽連國龍余興政林正凱
口試委員(外文):Lai, Yen-ShinHwang, Jonq-ChinLian, Kuo-LungYu, Hsing-ChengLin, Cheng Kai
口試日期:2016-01-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:118
中文關鍵詞:三相四開關變頻器三相六開關變頻器同步磁阻電動機預測電流控制
外文關鍵詞:four-switch three-phase invertersix-switch three-phase invertersynchronous reluctance motorpredictive current control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
摘要 ………………………………………………………………………………… I
Abstract …………………………………………………………………… II
目次 ……………………………………………………………………………… III
圖目次 ……………………………………………………………………………… V
表目次 ………………………………………………………………………… IX
符號索引 ……………………………………………………………………… X
第1章 緒論 …………………………………………………………… 1
1.1 研究背景與動機 ……………………………………… 1
1.2 文獻回顧 …………………………………………………… 3
1.3 目的及貢獻 ……………………………………………… 4
1.4 論文大綱 …………………………………………………… 5
第2章 同步磁阻電動機 …………………………………… 6
2.1 簡介 …………………………………………………………… 6
2.2 結構及特性 ……………………………………………… 7
2.3 數學模型 …………………………………………………… 9
第3章 模型式預測電流控制器設計 ……………… 16
3.1 簡介 …………………………………………………………… 16
3.2 基本原理 …………………………………………………… 16
3.3 模型式預測電流控制 ……………………………… 21
第4章 改良型預測電流控制器設計 ……………… 26
4.1 簡介 …………………………………………………………… 26
4.2 無模型式預測電流控制 ………………………… 27
4.3 四開關模擬六開關設計 ………………………… 32
第5章 系統研製 ………………………………………………… 37
5.1 簡介 …………………………………………………………… 37
5.2 硬體電路 …………………………………………………… 38
5.2.1 數位訊號處理器 ………………………………… 38
5.2.2 變頻器 ………………………………………………… 43
5.2.3 電流感測器 ………………………………………… 45
5.2.4 電流/電壓轉換電路 ………………………… 46
5.2.5 類比/數位轉換電路 ………………………… 47
5.3 軟體程式設計 ………………………………………… 48
第6章 實測結果 ………………………………………………… 52
6.1 簡介 …………………………………………………………… 52
6.2 實測結果 …………………………………………………… 53
第7章 結論與未來展望 …………………………………… 114
7.1 結論 …………………………………………………………… 114
7.2 未來展望 …………………………………………………… 114
參考文獻 ……………………………………………………………………… 115


[1]T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 105-117, Apr. 1988.
[2]C. S. Paresh, “Electric motor drives and control-past, present, and future,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 562-575, Dec. 1990.
[3]C. Allen and P. Pillay, “TMS320 design for vector and current control of AC motor drives,” IEE Proc. Electr. Power Appl., vol. 28, no. 23, pp. 2188-2190, Nov. 1992.
[4]W. Li, A. Li, and H. Wang, “Anisotropic fracture behavior of sintered rare-earth permanent magnets,” IEEE Trans. Magn., vol. 41, no. 8, pp. 2339-2554, June 2007.
[5]M. Centner and U. Schafer, “Optimized design of high-speed induction motors in respect of the electrical steel grade,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 288-295, Jan. 2010.
[6]R. S. Colby, “Classification of inverter driven permanent magnet synchronous motors, ” IEEE Proceedings of Industry Applications Society Conference, pp. 1-6, Oct. 1988.
[7]M. J. Melfi, S. D. Rogers S. Evon, and B. Martin, “Permanent-magnet motor for energy saving in industrial application,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
[8]M. S. Islam, R. Islam, and T. Sebastian, “Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 88-95, Nov./Dec. 2008.
[9]A. R. Tarip, C. E. Nino-Baron, and E. G. Strangas, “Overload considerations for design and operation of IPMSMs,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 921-930, Dec. 2010.
[10]J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, Feb. 2007.
[11]M. J. Kamper and A. F. Volsdhenk, “Effect of rotor dimensions and cross magnetisation on Ld and Lq inductances of reluctance synchronous machine with cageless flux barrier rotor,” IEE Proc. Elect. Power Applicat., vol. 141, no. 4, pp. 213-220, July 1994.
[12]A. Fratta, G. P. Toglia, A. Vagati, and F. Villata, “Torque ripple evaluation of high-performance synchronous reluctance machines,” IEEE Ind. Applicat. Mag., vol. 1, no. 4, pp. 14-22, July/ Aug. 1995.
[13]T. J. E. Miller, A. Hutton, C. Cossar, and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Applicat., vol. 27, no 4, pp. 741-749, July/ Aug. 1991.
[14]A. A. Arkadan and A. A. Russell, “Effects of converter excitation on the performance of axially laminated anisotropic synchronous reluctance motor drives,” IEEE Trans. Magn., vol. 35, no 3, pp. 1865-1868, May 1999.
[15]A. Vagati, M. Pastorelli, and G. Franceschini, “High-performance control of synchronous reluctance motors,” IEEE Trans. Ind. Applicat., vol. 33, no. 4, pp. 983-991, July/ Aug. 1997.
[16]T. -H. Liu, M. -T. Lin, and Y. -C. Yang, “Nonlinear control of a synchronous reluctance drive system with reduced switching frequency”, IEE Proceedings Electric Power Applications., vol. 153, no. 1, pp. 47-56, Jan. 2006.
[17]H. K. Chiang, and C. H. Tseng, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive,” IEE Proc. Electr. Power Appl., vol. 151, no. 3, pp. 349-358, May 2004.
[18]R. Morales-Caporal and M. Pacas, “Suppression of saturation effects in a sensorless predictive controlled synchronous reluctance machine based on voltage space phasor injections,” IEEE Trans. on Industrial Electronics., Vol. 58, No. 7, pp. 2809-2817, July 2011.
[19]T. Matsuo and T. A. Lipo, “Current sensorless field oriented control of synchronous reluctance motor,” in IEEE Conf. Rec. IAS’ 93, vol. 1, pp. 672-678, April 1993.
[20]R. Lagerquist, I. Boldea, and T.J.E. Miller, “Sensorless control of the synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-682, May/June 1994.
[21]H. A. Toliyat, L. Xu, and T. A. Lipo, “A five-phase reluctance motor with high specific torque,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 659-667, May/ June 1992.
[22]R. Shi and H. A. Toliyat, “Vector control of five-phase synchronous reluctance motor with space vector pulse width modulation (SVPWM) for minimum switching losses,” IEEE Conf. Rec. APEC- 2002, vol. 1, pp. 57-63, Mar. 2002.
[23]T. Matsuo and T. A. Lipo, “Rotor position detection scheme for synchronous reluctance motor based on current measurements,” IEEE Trans. Ind. Appl., vol. 31, no. 4, pp. 860-868, July/ Aug. 1995.
[24]M. S. Arefeen, M. Ehsani, and T. A. Lipo, “Sensorless position measurement in synchronous reluctance motor,” IEEE Trans. Power Electr., vol. 9, no. 6, pp. 624-630, Nov. 1994.
[25]R. Lagerquist, I. Boldea, and T. J. E. Miller, “Sensorless control of the synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-682, May/ June 1994.
[26]S. J. Kang, J. M. Kim, and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Ener. Conv., vol. 14, no. 4, pp. 1271-1275, Dec. 1999.
[27]J. I. Ha, S. J. Kang, and S. K. Sul, “Position-controlled synchronous reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1393-1398, Nov./ Dec. 1999.
[28]T. H. Liu and H. H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IET Proceedings Electric Power Application, vol. 1, no. 5, pp. 815-824, Sep. 2007.
[29]P. Guglielmi, M. Pastorelli, and A. Vagati, “Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2322-2333, Apr. 2006.
[30]P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross-saturation effects in IPM motors and related impact on sensorless control,” IEEE Transactions on Industry Applications, vol. 42, no. 6, pp. 1516-1522, Nov./Dec. 2006.
[31]P.J. Lawrenson, J.M. Stephenson, P.T. Blenkinsop, J. Corda, and N. N. Fulton, “Variable-speed switched reluctance motors,” IEE Proc. Electric Power Appl., vol. 127, no. 4, pp. 253-265, July 1980.
[32]A.A Goldenberg, I. Laniado, P. Kuzan, C. Zhou, “Control of switched reluctance motor torque for force control applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 461-466, Aug. 1994.
[33]G.W. Buckley, “Switched reluctance motors,” in Conf. Rec. Electrical Electronics Insulation and Electrical Manufacturing & Coil Winding, pp. 341-344, 1995.
[34]L. Chang, “Control of a switched reluctance motor for automotive applications,” in IEEE Conf. Rec. Elect. and Comp. Eng., vol. 1, pp. 393-396, 1998.
[35]N. H. Fuengwarodsakul, M. Menne, R. B. Inderka, and R. W. D. Doncker, “High-dynamic four-quadrant switched reluctance drive based on DITC,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1232-1242, Sept./Oct. 2005.
[36]X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2076-2090, Sept. 2009.
[37]Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Electric Power Applications, vol. 1, no. 3, pp. 395-401, May 2007.
[38]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 200-208, Jan. 2005.
[39]A. Fratta and A.Vagati, “A reluctance motor drive for high dynamic performance application”, IEEE Trans. Ind. Appl., Vol. 28, No. 4, pp. 873-879, July/Aug. 1992.
[40]A. Chiba and T. Fukao, “A closed-loop operation of super high-speed reluctance motor for quick torque response”, IEEE Trans. Ind. Appl., Vol. 28, No. 3, pp. 600-606, May/June 1992.
[41]R.E. Betz, “Control of synchronous reluctance machines,” in Conf. Rec. 1991 IEEE Ind. Appl. Soc. Annu. Meet., vol. 296, pp. 1110-1122, Oct. 1991.
[42]E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001.
[43]Texas Instruments, TMS320x280x Digital Signal Processors, May 2012.
[44]Senken, SCM124xMF High Voltage, High Current 3-Phase Motor Drivers, 2015.
[45]LEM, Current Transducer LA 25-NP, Sept. 2009.
[46]Texas Instruments, TL08x Jfet-Input Opeerational Amplifiers, Sept. 2005.
[47]Analog Devices, AD7655* Low Cost 4-Channel 1 MSPS 16-Bit ADC, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top