跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯清賢
研究生(外文):Ho Ching-Hsien
論文名稱:氣候變遷對臺灣沿近海漁業生產衝擊與調適之研究
論文名稱(外文):Impact and adaptation study of production in Taiwan’s coastal and offshore fisheries under climate change
指導教授:呂學榮
指導教授(外文):Lu, Hsueh-Jung
口試委員:孫志陸陳清春邵廣昭吳龍靜李明安
口試委員(外文):Sun, Chi-LuChen, Ching-ChunShao, Kwang-TsaoWu, Lung-JingLee, Ming-An
口試日期:2016-06-29
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:沿近海漁業供給事後補償式管理風險管理氣候變遷氣候衝擊氣候變遷調適策略氣候風險漁產品預防性調適管理需求糧食安全
外文關鍵詞:Climate changeClimate change adaptation strategiesClimate riskDemandCoastal and offshore fisheriesFood securityPrecautionary mitigation measuresResilienceRisk managementSeafoodSupply
相關次數:
  • 被引用被引用:3
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:1
世界人口至2050年將突破90億,糧食生產技術雖不斷突破,但受限於海洋資源的有限性、漁業資源枯竭與氣候變遷的加劇,未來仍可能發生如人口論所提糧食生產無法滿足全球人口需求的困境,並引發糧食短缺、飢餓等潛在問題,全球糧食分配將更為競爭,並可能發生糧食安全危機之窘境。因此,若無法改善現有的糧食分配模式,隨著氣候變遷的加劇,未來糧食生產的不確定性提高,糧食短缺的現象將更為嚴重。特別是,位於“氣候衝擊熱區”的熱帶與亞熱帶地區與島嶼型國家,如臺灣。為瞭解氣候變遷對臺灣境內漁業的影響程度,本研究以境內生產的沿近海捕撈漁業為研究對象,探討氣候變遷下臺灣漁產品供應衝擊與調適,並分為數層面進行深入探究,包括生產現況、糧食安全中扮演的角色、面臨的氣候衝擊類型與氣候衝擊事實、臺灣現存的漁業調適策略與規劃,並從科學數據找出現有調適不足之處與潛在風險。
本研究分析結果顯示,氣候變遷造成的海洋環境改變已對區域性漁業與整體沿岸漁業漁獲物組成與群聚結構產生影響,冬春季型的大洋性洄游魚類漁獲比例減少、漁場逐漸往北退縮。反之,夏秋季型的大洋性洄游魚類漁獲比例則逐漸增加,漁場位置往北推移。此外,地方性漁業以發生非目標魚種產量突發性驟增與目標魚種的突發性驟減產生的年間變動,並對地方性漁業生產產生影響。
面對氣候衝擊,臺灣現有的調適策略主要以事前調適規劃為主,調適策略的目的為提前預防未來的氣候衝擊,並減輕氣候變遷對國內生產的影響。事後調適措施僅針對特定物種實施平準計畫,以短期減輕氣候對漁產品供需的影響。然而,現有的調適措施仍有不足之處。漁業生產方面包括:預警措施不足、現有科學資訊缺乏、未設立緊急措施等事前預防措施仍需加強,漁產品供需部分為替代性漁產的調適方針較少著墨,國際漁產品市場或國內生產發生突發性波動時,現有供應模式將無法立即性因應。因氣候變遷對糧食供需主要透過生產與供給兩個方面產生影響,根據風險管理原則,面對氣候風險與漁產供需的不確定性,生產與供給的調適策略可分為事前的預防性管理與事後補償式管理。生產的不確性重於事前的預防性管理,以避免、轉嫁與降低等預防性措施為主,藉此增進生產或進口行為的產業韌性為主。供給不確定性則以採用事後補償式管理,以適應性管理的途徑與風險自留的方式進行產銷的修正與氣候衝擊之減緩。

The human population is projected to grow to more than 9 billion by 2050. New farming and fishing techniques are continually being developed. However, food production remains restricted by the finiteness of natural resources and the rapid increase in the global population. In the future, food production may decline because of the aggravated effects of climate change. Food production will be unable to satisfy the demands of the global population, leading to a food security crisis. As the world population continues to increase, food shortages will become increasingly severe, particularly for regions located in “climate impact hot spots” in tropical and subtropical zones and for small-island countries such as Taiwan. In the present study, supply and demand are analysed to examine the risks and uncertainties associated with the impact of climate change on the domestic seafood supply. First, we conduct a literature review to identify the climate risk for sea food security, and then, we analyse the domestic production of both the marine fishing catch and climate impact. Moreover, due to the type of climate impact and the differences between long-term climate impact and extreme climate impact, we collect and compile the existing climate adaptation strategies of fishery production and the demand and supply of seafood in Taiwan. Finally, we perform a comparative analysis to seek any deficiencies in the existing climate adaptation strategies and offer new adaptation guidelines based on the existing climate adaptation strategies.
The results show that Taiwan’s major adaptation strategies have been precautionary mitigation measures. In terms of resilience management, only the buffer stock scheme plan and the stabilization funds method are selected for some specific species to mitigate the short-term fluctuation in both yield and price for domestic seafood. However, we will confront uncertainties stemming from global climate change in the future; the existing climate adaptation strategies of Taiwan are still not sufficient to respond to climate impacts. For example, the climate change early warning system is still very inadequate, the existing scientific knowledge is insufficient, and the current adaptation strategies are insufficient for resolving the fluctuations in the market mechanism of seafood. According to the principles of risk management, the adaptation strategies recommended in this study can be differentiated into two categories: precautionary mitigation measures can be used to adapt to domestic production and uncertainties; such measures include avoidance, transfer, and reduction to prevent the frequency and consequences of climate change for building a resilient fisheries sector. Moreover, resilience management (e.g., risk retention) can be used to respond to uncertainties in supply for adjusting production and mitigating the risks of climate change.

中英文摘要
目次
表目次
圖目次

第壹章 緒論
第一節 研究背景 2
第二節 研究動機 6
第三節 研究目的 8
第四節 研究方法與步驟 8
第五節 章節安排 11

第貳章氣候變遷對臺灣地方性沿近海漁業漁獲物組成衝擊分析-以貢寮漁村為例
第一節 前言 12
第二節 研究材料與方法 16
2.2.1 漁獲量資料收集與分析
2.2.1.1 CPUE 16
2.2.1.2 nMDS分析 17
2.2.1.3 優勢魚種選擇 17
2.2.2 氣候環境資料分析
2.2.2.1 SST 18
2.2.2.2 SOI 19
2.2.2.3 Rainfall 19
2.2.2.4 Chlorophyll-a 19
2.2.3 主成分分析 20
第三節 地方性漁業漁獲組成變化與氣候變遷
2.3.1 nMDS與優勢魚種長期變動趨勢
2.3.1.1 nMDS 20
2.3.1.2 優勢魚種長期變動趨勢 21
2.3.2 海洋環境長期變動趨勢
2.3.2.1 SSTA變化趨勢 22
2.3.2.2 降雨量變化趨勢 22
2.3.2.3 Chlorophyll-a變化趨勢 22
2.3.3 PCA與PCR分析結果
2.3.3.1 PCA分析 24
2.3.3.2 PCR分析 24
第四節 討論 25
2.4.1水溫暖化對大洋性洄游性優勢魚種之影響 26
2.4.2 Chl-a與Rainfall對中底層定棲性優勢魚種組成之影響 27
第五節 小結 28

第參章 氣候變遷對臺灣沿近海漁業衝擊與影響分析
第一節 前言 29
第二節 研究材料與方法
3.2.1 漁獲量資料收集與分析 31
3.2.2 魚類季節性分析模式 31
3.2.3 氣候環境資料分析 32
第三節 沿岸漁業漁獲量長期變動趨勢與海水暖化
3.3.1 漁獲物種季節性判定 33
3.3.1.1 單季型魚種漁獲量長期變化 33
3.3.1.2 所有具有季節性漁種漁獲量長期變化 34
3.3.2 臺灣周邊海域長期海水暖化趨勢 36
3.3.3 SST與漁獲量相關係數空間分佈 41
第四節 討論 43
第五節 小結 44

第肆章 臺灣沿近海漁業現有氣候變遷調適策略之潛在風險與不確定性
第一節 前言 45
第二節 研究方法 46
第三節 臺灣沿近海漁業現有調適策略 46
4.3.1 漁業長期調適選項 46
4.3.2 漁業中短期調適選項 47
第四節 臺灣現有調適策略潛在風險與不確定性 47
4.4.1 漁業生產不確定性與風險 48
4.4.2 漁產品供需不確定性與風險 49

第伍章 未來臺灣沿近海漁業可行的調適策略與方案
第一節 前言 53
第二節 研究方法 53
第三節 沿近海漁業生產不確定性之減輕 53
第四節 漁產品供需不確定性之減輕 55
第陸章 未來研究之建議 57
參考文獻 59

圖目次
圖1-1 1993-2012年臺灣漁產品供應現況 1
圖1-2 1993-2012年臺灣漁產品進口現況 2
圖1-3 1953-2012年全球漁產品供應 3
圖1-4 氣候變遷對漁業生產與漁產品供需影響途徑 5
圖1-5 1950-2012年臺灣沿近海漁業產量 10
圖1-6 1950-2012年臺灣沿近海漁業產值 10
圖1-7 研究方法與步驟 11
圖2-1 1996–2010年貢寮漁業主要12大優勢魚種 17
圖2-2 臺灣貢寮地理位置周邊海流與漁業作業海域 (左); SST與Chlorophyll-a範圍:121°E-122°E; 25°N-26°N (右) 19
圖2-3 1996-2010年貢寮地區漁獲物群聚分析 (nMDS) 20
圖2-4 1996-2010年貢寮地區Top 12 魚種歷年漁獲量變化 21
圖2-5 1996-2010年臺灣東北地區海水表面溫度異常值 (SSTA)及累計值變動趨勢 22
圖2-6 1996-2010年貢寮地區降雨量異常值 (RA)及累計值變動趨勢 23
圖2-7 1996-2010年臺灣東北部地區Chlorophyll-a異常值 (CA)及累計值變動趨勢 23
圖3-1 1963-2010年臺灣沿岸漁業組成比例 30
圖3-2 1963-2010年間NE、NW、SE與SW四個區域SST觀測網格 33
圖3-3 1963-2010年間沿岸漁業單季型物種的漁獲比例趨勢 34
圖3-4 1963-2010年間沿岸漁業所有具有季節性魚種之漁獲比例趨勢 34
圖3-5 1963-2010年間臺灣周邊海域SST正負變異比例 37
圖3-6 1963-2010年間臺灣周邊海域SST正負變異分布位置 38
圖3-7 1963-2010年臺灣周邊海域SSTA與C-SSTA變化趨勢 39
圖3-8 1963-2010年臺灣周邊海域SST與漁獲量之間的相關係數空間分佈 41

表目次
表1-1 1993-2012年臺灣漁產品供需市場之國內生產與進口佔比 3
表1-2 2011年臺灣前10大漁產品進口國與主要進口漁產品種類 9
表1-3 1993-2012年臺灣漁產品供應與需求 9
表2-1 貢寮漁業漁獲魚種與捕撈漁具 14
表2-2 1996–2010年貢寮漁業主要12大優勢魚種 18
表2-3 氣候因子PCA分析結果 24
表2-4 貢寮地區優勢物種之主成分迴歸分析結果 25
表3-1 臺灣沿岸漁業單季型洄游物種 35
表3-2 臺灣沿岸漁業雙季型洄游物種 35
表3-3 臺灣沿岸漁業無明顯季節性物種 36
表4-1 臺灣地方性漁業與沿岸漁業氣候衝擊類型 50
表4-2 氣候變遷對臺灣漁業生產可能的影響 51
表4-3 臺灣現有氣候衝擊調適策略之潛在風險與不確定性 52


行政院農委會漁業署 (2013). 中華民國102年台閩地區漁業統計年報,台北。
行政院農委會漁業署 (2012). 中華民國101年台閩地區漁業統計年報,台北。
行政院農委會漁業署 (2011). 中華民國100年台閩地區漁業統計年報,台北。
行政院農委會 (2014). 中華民國103年糧食供需年報,台北。
行政院農委會 (2013). 中華民國102年糧食供需年報,台北。
行政院農委會 (2012). 中華民國101年糧食供需年報,台北。
行政院經濟建設委員會 (2012). 國家氣候變遷調適政策綱領,台北,57頁。
呂學榮 (2010). 海洋漁業因應氣候變遷衝擊之調適策略。因應氣候變遷漁業調適政策探討彙編專刊,頁 21-28。
李國添 (2010)a. 因應氣候變遷漁業調適政策探討。因應氣候變遷漁業調適政策探討彙編專刊,頁 05-08。
李明安 (2010)b. 因應極端氣候衝擊之調適策略。因應氣候變遷漁業調適政策探討彙編專刊,頁 35-43。
李國添 (2012). 臺灣周邊海域因氣候變遷流系消長對重要經濟性魚類漁業資源變動影響之研究。行政院農委會漁業署成果報告,46頁。
邵廣昭、廖運志 (2015). 臺灣海鮮選擇指南,中央研究院生物多樣性研究中心 魚類生態與演化研究室,20頁。
邵廣昭、林幸助 (2010). 因應氣候變遷對海洋生態衝擊之調適策略。因應氣候變遷漁業調適政策探討彙編專刊,頁 09-20。
林峰田、廖宜霈 (2014). 以文字探勘法探討地方型氣候變遷調適計畫之認知落差。台灣氣候變遷調適規劃成果發表會,台北,頁 27-48。
徐旭誠、張伊芳 (2014). 氣候變遷調適政策規劃與落實機制。台灣氣候變遷調適規劃成果發表會,台北,頁 1-26。
陳清春 (2011). 臺灣漁產品糧食安全需求之研究。行政院農委會,台北,119頁。
侯清賢、呂學榮 (2013). 我國水產品進口的氣候風險。台灣水產681:48-59。
Aguilera, A. M. and M. E. M. J. Valderrama (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput. Stat. Data. Anal, 50 (8): 1905-1924.
Bennett, W. A., D. J. Ostrach and D. E. Hinton (1995). Larval striped bass condition in a drought-stricken estuary: evaluating pelagic food-web limitation. Ecological Applications, 5: 680–692.
Blaber, S. J. M (1997). Fish and Fisheries of Tropical Estuaries. Chapman & Hall, London.
Brander, K. M (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences of the United States of America, 104: 19709-19714.
Chang, Y., M. A. Lee., K. T. Lee and K. S. Shao (2013). Adaptation of fisheries and mariculture management to extreme oceanic environmental changes and climate variability in Taiwan. Marine Policy, 38: 476-482.
Chen, J. L., H. H. Liu., C. T. Chuang and H. J. Lu (2015). The factors affecting stakeholders' acceptance of offshore wind farms along the western coast of Taiwan: Evidence from stakeholders' perceptions. Ocean & Coastal Management, 190: 40-50.
Cheung, W. W.L., D. Watson and D. Pauly (2014). Signature of ocean warming in global fisheries catch. Nature, 497: 365–368.
Cheung, W. W.L., V. W. Y. Lam., J. L. Sarmiento., K. Kearney., R. Watson and D. Pauly (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10: 235-251.
Cheung, W. W. L., V. W. Y. Lam, J. L. Sarmiento, K. Kearney, R. Watson, D. Zeller and D. Pauly (2010). Large-scale redistribution of maximum fisheries catch potential in the global gcean under climate change. Global Change Biology, 16 (1): 24-35.
Clarke, K. R and R. N. Gorley (2006). Primer v6: User Manual Tutorial. Primer-E, Plymouth, England.
Cline, W (2007). Global Warming and Agriculture: Impact Estimates by Country. Center for Global Development, Washington, DC, USA. 250 pp.
Cochrane, K., C. De Young., D. Soto and T. Bahri (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. Rome, 212pp.
Conway, G (2012). One billion hungry; can we feed the world? Cornell University Press.
Daw, T., W. Adger., K. Brown and M. Badjeck (2009). Climate change and capture fisheries: potential impacts, adaptation and mitigation. Overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper 530. Climate Change Implications for Fisheries and Aquaculture, 530: 107-150.
Delgado, C. L., N. Wada., M. W. Rosegrant., S. Meijer and M. Ahmed (2003). Fish to 2020: Supply and demand in changing global market. Washington, D.C., US and Penang, Malaysia.
FAO (Food and Agriculture Organization of the United Nations) (2015). The State of Food Insecurity in the World 2015, Food and Agriculture Organization.
FAO (Food and Agriculture Organization of the United Nations) (2014). The State of the World Fisheries and Aquaculture 2014, Food and Agriculture Organization.
FAO (Food and Agriculture Organization of the United Nations) (2009). Climate change implications for fisheries and aquaculture, Food and Agriculture Organisation, 212 pp.
FAO (Food and Agriculture Organization of the United Nations) (2005). The State of World Fisheries and Aquaculture 2004, Food and Agriculture Organisation, Rome, pp. 153.
Ghosh, S., R. Thangavelu., G. Mohamed., H. K. Dhokia., M. S. Zala., Y. D. Savaria, and A. A. Ladani (2011). Sudden emergence of fishery and some aspects of biology and population dynamics of Aluterus monoceros (Linnaeus, 1758) at Veraval. Indian Journal of Fisheries, 58(1): 31-34.
Glantz, M. H (1992). Climate variability, climate change, and fishery, Cambridge University Press, 450pp.
Ho, C. H., H. J. Lu., J. S. He., K. W. Lan and J. L. Chen (2016). Changes in Patterns of Seasonality Shown by Migratory Fish under Global Warming: Evidence from Catch Data of Taiwan’s Coastal Fisheries. Sustainability, 8(3): 273. doi: 10.3390/su8030273
Ho, C. H., K. W. Yen and H. J. Lu (2013). Long-term (1963-2010) change in seasonality of fish from catch data of Taiwan coastal fisheries. International Conference on Challenges in Aquatic Sciences, 15-21 March 2013, Keelung, Taiwan: 129.
Hobday, A.J and Pecl, G.T (2014). Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries. 24: 415-425. doi: 10.1007/s11160-013-9326-6.
Hwang, J. S., H. U. Dahms., L. C. Tseng and Q. C. Chen (2007). Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. Journal of Experimental Marine Biology and Ecology, 352: 12-27.
Igor, M. B and M. A. Lee (2014). Long-term variability of sea surface temperature in Taiwan Strait. Climatic Change, doi: 10.1007/s10584-014-1121-4
IPCC (2014). Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 169 pp.
Jan. S., C. S. Chern and J. Wang (1995). A numerical study on currents in Taiwan Strait during summertime. La Mer, 33: 23-40.
Jan. S., J. Wang., C. S. Chern and S. Y. Chao (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35: 249-268.
Kruskal, J. B (1964). Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika, 29: 1–27.
Kuiter, R. H and T. Tonozuka (2001). Pictorial guide to Indonesian reef fishes, Part 3. Jawfishes - Sunfishes, Opistognathidae - Molidae. Zoonetics, Australia, 623-893.
Lan, K. W., M. A. Lee., C. I. Zhang., P. Y. Wang., L. J. Wu and K. T. Lee (2014). Effects of climate variability and climate change on the fishing conditions for grey mullet (Mugil cephalus L.) in the Taiwan Strait. Climatic Change, doi: 10.1007/s10584-014-1208-y
Lee, H. J and S. Y. Chao (2003). A climatological description of circulation in and around the East China Sea. Deep-Sea Research II, 50: 1065-1084.
Liang, W. D., T. Y. Tang., Y. J. Yang., M. T. Ko and W. S. Chuang (2003). Upper-ocean currents around Taiwan. Deep-Sea Research II, 50: 1085-1106.
Liao, C. H., M. A. Lee., Y. C. Lan and K. T. Lee (2006). The temporal and spatial change in position of squid fishing ground in relation to oceanic features in the northeastern waters of Taiwan. Journal of the Fisheries Society of Taiwan, 33: 99-113.
Lin, K.C (2014). A study on the construction of the food security system for adapting to economic and trade liberalization in economic and trade liberalization in Taiwan. Council of Agriculture, Executive Yuan. (in Chinese)
Liu, Z and J. Gan (2012). Variability of the Kuroshio in the East China Sea derived fromsatellite altimetry data. Deep-Sea Res I, 59: 25-36.
Loneragan, N. R and S. E. Bunn (1999). River flows and estuarine ecosystems: implications for coastal fisheries from a review and a case study of the Logan River, southeast Queensland. Australian Journal of Ecology, 24: 431–440.
Lu, J. H and S. L. Lee (2014). Observations of changes in the fish species composition in the coastal zone at the Kuroshio Current and China Coastal Current front during climate change using set-net fishery (1993-2011). Fisheries Research 155: 103-113.
Lu. H. J., C. H. Ho and K. W. Yen (2012). On the adaptations of capture fishery to climate change in Taiwan. APEC Seminar on Sharing the Experience of Mitigating the Impact of Extreme Climate on Aquaculture and Fisheries, 21-23 March 2012, Taipei, Taiwan: 190-196.
Malthus, T (1789). An Essay on the Principle of Population. London.
Meynecke, J. O. and S. Y. Lee (2011). Climate-Coastal Fisheries Relationships and Their Spatial Variation in Queensland. Australia. Fisheries Research, 110: 365-376.
Meynecke, J. O., S. Y. Lee., N. C. Duke and J. Warnken (2006). Effect of Rainfall as a Component of Climate Change on Estuarine Fish Production in Queensland, Australia. Estuarine Coastal and Shelf Science, 69: 491-504.
OECD-FAO (OECD/Food and Agriculture Organization of the United Nations), 2014. OECD-FAO Agricultural Outlook 2014, OECD Publishing. http://dx.doi.org/10.1787/agr_outlook-2014-en
Oey, L. Y., M. C. Chang., Y. L. Chang., Y. C. Lin and F. H. Xu (2013). Decadal warming of coastal China Seas and coupling with winter monsoon and currents. Geophys. Res. Lett, 40: 6288-6292.
Perry, A. L., P. J. Low., J. R. Ellis and J. D. Reynolds (2005). Climate change and distribution shifts in marine fishes. Science, 308: 1912–1915.
Quiñones, R. A and R. M. Montes (2001). Relationship between freshwater input to the coastal zone and the historical landing of the benthic/demersal fish Eleginops maclovinus in central-south Chile. Fisheries Oceanography, 10: 311–328.
Rice, J. C and S. M. Garcia (2011). Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES Journal of Marine Science, 68(6): 1343-1353. doi:10.1093/icesjms/fsr041.
Shao, K. T and J. Y. Chen (2004). Coastal Fishes of Taiwan. Available online: http://fishdb.sinica.edu.tw/chi/home.php.
Tang, T. Y and Y. J. Yang (1993). Low frequency current variability on the shelf breaknortheast of Taiwan. J. Oceanogr, 49: 193-210.
Tian, Y., Y. Ueno., M. Suda and T. Akamine (2004). Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century. Journal of Marine Systems, 52: 235-257.
Tian, Y. J., H. Kidokoro and T. Watanabe (2006). Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68 (2-4): 217-237.
Tian, Y., H. Kidokoro and T. Fujino (2011). Interannual-decadal variability of demersal fish community in the Japan Sea: impacts of climate regime shifts and trawl fishing with implications for ecosystem-based management. Fisheries Research, 112: 140-153.
Tseng, R. S and Y. T. Shen (2003) Lagrangian observations of surface flow patterns in the vicinity of Taiwan. Deep-Sea Research II, 50: 1107-1116.
Tung, C. P (1997). The impacts of climate change on Dai-Chia creek upstream flows. Taiwan Water Conserv.ancy. 45: 64-70.
UN-DESA (United Nations Department of Economic and Social Affairs) (2009). Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: the 2008 Revision and World Urbanization Prospects: the 2009 Revision. http://esa.un.org/wup2009/unup/index.asp.
UNEP (2007). GEO 4 Global Environment Outlook. Environment for Development. 540 pp.
Wang, K. Y., C. H. Liao, and K. T. Lee (2008). Population and maturation dynamics of the swordtip squid (Photololigo edulis) in the southern East China Sea. Fisheries Research, 90: 178-186.

Yearsley, G. K., P. R. Last and R. D. Ward (1999). Australian Seafood Handbook – An Identification Guide to Domestic Species. CSIRO Division of Marine Research, Canberra.
Zhang, C. I., J. B. Lee., S. Kim and J. H. Oh (2000). Climatic regime shifts and their impacts on marine ecosystems and fisheries resources in Korean waters. Progress in Oceanography, 47: 171-190.
Zhang, C. I., J. B. Lee., Y. I. Seo., S. C. Yoon and S. Kim (2004). Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea. Progress in Oceanography, 61: 245-265.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top