跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鐙慶
研究生(外文):Wang, Deng-Cing
論文名稱:不同氣候情境下未來大西洋鮪釣黃鰭鮪釣獲率之預測
論文名稱(外文):Prediction of yellowfin tuna hook rate in the Atlantic ocean for longline under different climate scenarios in the future
指導教授:呂學榮
指導教授(外文):Lu, Hsueh-Jung
口試委員:吳龍靜蘇楠傑
口試委員(外文):Wu, Long-JingSu, Nan-Jay
口試日期:2016-07-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:黃鰭鮪大西洋未來情境模型泛加成模式
外文關鍵詞:Yellowfin tuna (Thunnus albacares)Atlanticscenario modelGeneralized additive model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討大西洋延繩釣黃鰭鮪未來釣獲率及環境變化,整合台灣大西洋鮪延繩釣漁獲資料及海洋環境觀測資料,包含海表面溫度(SST)、海表面高度(SSH)、混合層深度(MLD)及淨初級生產力(NPP),利用IPCC發布之未來情境資料模擬,建構大西洋黃鰭鮪釣獲率變動與環境因子之泛加成模式(GAM),探討各情境下大西洋黃鰭鮪未來釣獲率趨勢與分布之變動。結果顯示各情境之環境因子對於黃鰭鮪釣獲率皆有顯著影響(檢定R2於RCP2.6情境為0.407、RCP4.5情境為0.411、RCP6.0情境為0.402及RCP8.5情境為0.410),其中各情境皆以SST之影響程度最為明顯(>24 °C皆有顯著正相關)。大西洋各漁區不同情境預測至2050年時,黃鰭鮪平均釣獲率呈穩定至小幅上升(各漁區與2016年釣獲率相比,變化率介於-2.96 %~11.42 %)。未來釣獲率變化之空間分布方面,高黃鰭鮪釣獲率區域集中於20°S~20°N之熱帶海域,且高釣獲率區域會隨季節變化而有不同(第1季於幾內亞灣、第3季於美國東岸海域出現高釣獲率)。整體而言,預測至2050年黃鰭鮪釣獲率未受到氣候變遷而導致強烈變動,在未來有小幅上升情形。此外,區域性海域(幾內亞灣和美國東岸海域)預測未來漁場有擴張趨勢出現,推測此情形可能因水溫於未來有持續上升情形致使黃鰭鮪棲地分布產生擴張。
Impacts of climate change on the catch rate of yellowfin tuna (Thunnus albacares) in the Atlantic longline were investigated in this study. Fishery data of the Taiwanese longline fleets and oceanic remote sensing environmental variables, as well as data from climate change models including sea surface temperature (SST), sea surface height (SSH), mixed layer depth (MLD) and net primary productivity (NPP) were compiled and used to develop a generalized additive model (GAM). Various scenarios considered by IPCC were used to predict the catch rates of yellowfin in the Atlantic ocean. The results show that every environmental factors had significantly effect of yellowfin’s catch rate(The R-squared in the scenario of RCP2.6 was 0.407, RCP4.5 was 0.411, RCP6.0 was 0.402 and RCP8.5 was 0.410). Among them, SST impact were most obvious(Predict SST >24 °C at all scenarios were significant positive correlation). Under different scenarios in all fishing zone, the changes of yellowfin’s catch rate were primarily maintain stable and increased slightly to 2050(Compared with 2016, the average change rate of catches at all fishing zone were between -2.96 % to 11.42 %). In regard to catch rate distribution in the future, major yellowfin catch will still concentrate at 20°S~20°N tropical ocean, and the high catch rate zones will be vary with the change of seasons(Predict at the first quarter in gulf of Guinea and at the third quarter in east coast of United States had high catch rate). In general, predicted trends of yellowfin catch rate and distribution to 2050 were not strongly affected by climate change, and had increase slightly in the future. In addition, fishing grounds at the specific regions(gulf of Guinea and east coast of United States) will be predicted that appear the expansion trend in the future. And considered that rise in the oceanic temperature have caused yellowfin tuna’s habitat distribution expansion in the future.
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
附錄 IX
壹、前言 1
一、 全球氣候與未來情境之變遷 1
二、 氣候變化對鮪漁況影響之文獻回顧 3
三、 大西洋洋流與黃鰭鮪漁場 4
四、 研究動機與目的 5
貳、材料與方法 7
一、 資料蒐集 7
二、 作業漁區區分及漁船作業型態 8
三、 漁獲與環境資料之整合 9
四、 統計分析 10
五、 未來情境模擬 11
參、結果 12
一、 黃鰭鮪之時空分布及漁場特性 12
二、 GAM模式建構及釣獲率與環境因子之變動 13
三、 預測未來黃鰭鮪釣獲率之分布與變動 14
肆、討論與結論 19
一、 環境因子對黃鰭鮪釣獲率之影響 19
二、 大西洋黃鰭鮪漁場時空間之變動 20
三、 預測期間各情境釣獲率之震盪變異情形 21
四、 釣獲率受氣候變遷之趨勢 21
五、 大西洋延繩釣黃鰭鮪作業變遷及未來之不確定性 22
六、 結論 23
參考文獻 25

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory 1, 267-281.

Anon. (2004). Sesión de evaluación ICCAT 2003 del stock de rabil (Mérida, México, 21–26 de julio). Collective Volume of Scientific Papers, ICCAT 2004, 56, 443-527.

Arocha, F., D. W. Lee, L. A. Marcano, and J. S. Marcano (2001). Update information on the spawning of yellowfin tuna(Thunnus albacares) in the western central Atlantic. Col Vol Sci Pap ICCAT, 52(1), 167-176.

Bard, F., and A. Hervé (1994). Structure du stock de l’albacore (Thunnus albacares) atlantique d’après les marquages comparés aux lieux de ponte. Rec. Doc. Sci, 42, 204-208.

Blanchard, J. L., S. Jennings, R. Holmes, J. Harle, G. Merino, Allen, J. I. Allen, J. Holt, N. K. Dulvy, and M. Barange (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1605), 2979-2989. doi: 10.1098/rstb.2012.0231.

Bopp, L., L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225-6245. doi: 10.5194/bg-10-6225-2013.

Briand, K., B. Molony, and P. Lehodey (2011). A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean. Fisheries Oceanography, 20(6), 517-529.

Broecker, W. S. (1987). Unpleasant surprises in the greenhouse? Nature, 328(6126), 123-126.

Capotondi, A., M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott (2012). Enhanced upper ocean stratification with climate change in the CMIP3 models. Journal of Geophysical Research: Oceans, 117(C4), n/a-n/a. doi: 10.1029/2011JC007409.

Chancollon, O., C. Pusineri, and V. Ridoux (2006). Food and feeding ecology of Northeast Atlantic swordfish (Xiphias gladius) off the Bay of Biscay. ICES Journal of Marine Science: Journal du Conseil, 63(6), 1075-1085.

Chen, S., R. Wu, and W. Chen (2015). The Changing Relationship between Interannual Variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. Journal of Climate, 28(2), 485-504.

Cheung, W. W., V. W. Lam, J. L. Sarmiento, K. Kearney, R. Watson, D. Zeller, and D. Pauly (2010). Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24-35.

Cheung, W. W., R. Watson, and D. Pauly (2013). Signature of ocean warming in global fisheries catch. Nature, 497(7449), 365-368.

Church, J. A., P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer, and A. S. Unnikrishnan (2013). Sea Level Change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Cubasch, U., D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J. G. Winther (2013). Introduction. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 119–158). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Cooley, S. R., J. E. Rheuban, D. R. Hart, V. Luu, D. M. Glover, J. A. Hare, and S. C. Doney, (2015). An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. PloS one, 10(5), e0124145.

Dagorn, L., K. N. Holland, J.P. Hallier, M. Taquet, G. Moreno, G. Sancho, D. G. Itano, R. Aumeeruddy, C. Girard, and J. Million, (2006). Deep diving behavior observed in yellowfin tuna (Thunnus albacares). Aquatic Living Resources, 19(01), 85-88.

Dell, J. T., C. Wilcox, R. J. Matear, M. A. Chamberlain, and A. J. Hobday (2015). Potential impacts of climate change on the distribution of longline catches of yellowfin tuna (Thunnus albacares) in the Tasman sea. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 235-245.

Fonteneau, A., and P. Soubrier (1996). Interactions between tuna fisheries: a global review with specific examples from the Atlantic ocean. FAO Fisheries Technical Paper, 84-123.

Ganachaud, A., A. S. Gupta, J. N. Brown, K. Evans, C. Maes, L. C. Muir, and F. S. Graham (2013). Projected changes in the tropical Pacific Ocean of importance to tuna fisheries. Climatic Change, 119(1), 163-179.

Hastie, T. J., and R. J. Tibshirani (1990). Generalized Additive Model. London, UK: Chapman and Hall.

Hsu, A. C., A. M. Boustany, J. J. Roberts, J.H. Chang, and P. N. Halpin (2015). Tuna and swordfish catch in the U.S. northwest Atlantic longline fishery in relation to mesoscale eddies. Fisheries Oceanography, 24(6), 508-520. doi: 10.1111/fog.12125.

ICCAT (2015). Report of the standing committee on research and statistics (Vol. 2). Madrid (Spain).

Jimeno, J. L. (2015). Behavior of tuna and non-tuna species at Fish Aggregating Devices(FADs), ascertained through fishers' echo-sounder buoys:implications for conservation and management,154pp.

Lan, K. W., K. Evans, and M. A. Lee (2013). Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Climatic Change, 119(1), 63-77.

Lan, K. W., M. A. Lee, H. J. Lu, W. J. Shieh, W. K. Lin, and S. C. Kao (2011). Ocean variations associated with fishing conditions for yellowfin tuna (Thunnus albacares) in the equatorial Atlantic Ocean. ICES Journal of Marine Science: Journal du Conseil. doi: 10.1093/icesjms/fsr045.

Lee, Y. C., and T. Nishida (2002). Some considerations to separate Taiwanese regular and deep longliners. IOTC Proceedings no. 5, 328-334.

Lehodey, P., F. Chai, and J. Hampton (2003). Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model. Fisheries Oceanography, 12(4-5), 483-494.

Lehodey, P., I. Senina, B. Calmettes, J. Hampton, and S. Nicol (2013). Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climatic Change, 119(1), 95-109. doi: 10.1007/s10584-012-0595-1.

Lehodey, P., I. Senina, S. Nicol, and J. Hampton (2015). Modelling the impact of climate change on South Pacific albacore tuna. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 246-259.

Liang, N., and R. S. Bradley (2016). NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs. Climate Dynamics, 45(3), 1257-1276.

Lu, H. J., K. T. Lee, H. L. Lin, and C. H. Liao (2001). Spatio‐temporal distribution of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) in the Tropical Pacific Ocean in relation to large‐scale temperature fluctuation during ENSO episodes. Fisheries science, 67(6), 1046-1052.

Matsumoto, T., T. Kitagawa, and S. Kimura (2013). Vertical behavior of juvenile yellowfin tuna (Thunnus albacares) in the southwestern part of Japan based on archival tagging. Fisheries science, 79(3), 417-424.

Maury, O., D. Gascuel, and A. Fonteneau (2001). Spatial Modeling of Atlantic Yellowfin Tuna Population Dynamics: Application of a Habitat Based Advection-Diffusion-Reaction Model to the Study of Local Overfishing: Spatial processes in marine fisheries, University of Alaska Sea Grant, Fairbanks.

Maury, O., D. Gascuel, F. Marsac, A. Fonteneau, and A. L. D. Rosa (2001). Hierarchical interpretation of nonlinear relationships linking yellowfin tuna (Thunnus albacares) distribution to the environment in the Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 458-469.

Mugo, R., S. I. Saitoh, A. Nihira, and T. Kuroyama (2010). Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography, 19(5), 382-396.

Muhling, B. A., Y. Liu, S. K. Lee, J. T. Lamkin, M. A. Roffer, F. Muller-Karger, and J. F. Walter (2015). Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. Journal of Marine Systems,148, 1-13.

Nakagome, J. (1978). The study of relation between tuna and oceanography. Bull. Jap. Soc. Fish. Oceanogr, 44, 231-234.

Pereira, J. (1995). A pesca do atum nos Açores eo atum patudo (Thunnus obesus, Lowe 1839) do Atlântico. Arquivos do DOP.

Pinet, P. R. (2011). Invitation to oceanography, 6th Ed., United States of America, Jones and Bartlett Publishers, LLC.

Potier, M., F. Marsac, Y. Cherel, V. Lucas, R. Sabatié, O. Maury, and F. Ménard (2007). Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fisheries Research, 83, 60-72.

Pusineri, C., O. Chancollon, J. Ringelstein, and V. Ridoux (2008). Feeding niche segregation among the North-east Atlantic community of oceanic top predators. Marine ecology-progress series, 361, 21.

Rouyer, T., J. M. Fromentin, F. Ménard, B. Cazelles, K. Briand, R. Pianet, B. Planque, and N. C. Stenseth (2008). Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proceedings of the National Academy of Sciences, 105(14), 5420-5425.

Sagarminaga, Y., and H. Arrizabalaga (2010). Spatio-temporal distribution of albacore (Thunnus alalunga) catches in the northeastern Atlantic: relationship with the thermal environment. Fisheries Oceanography, 19(2), 121-134.

Setiawati, M. D., A. B. Sambah, F. Miura, T. Tanaka, and A. R. As-syakur (2015). Characterization of bigeye tuna habitat in the Southern Waters off Java–Bali using remote sensing data. Advances in Space Research, 55(2), 732-746.

Su, N. J., C. L. Sun, A. E. Punt, S. Z. Yeh, G. DiNardo, and Y. J. Chang (2013). An ensemble analysis to predict future habitats of striped marlin (Kajikia audax) in the North Pacific Ocean. ICES Journal of Marine Science: Journal du Conseil, 70(5), 1013-1022. doi: 10.1093/icesjms/fss191.

Syamsuddin, M. L., S. I. Saitoh, T. Hirawake, S. Bachri, and A. B. Harto (2013). Effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fishery Bulletin, 111(2), 175-188.

Teo, S. L., and B. A. Block (2010). Comparative influence of ocean conditions on yellowfin and Atlantic bluefin tuna catch from longlines in the Gulf of Mexico. PloS one, 5(5), e10756.

Tolba, M. K., O. A. El-Kholy, and U. N. E. Programme (1992). The World environment 1972-1992: two decades of challenge: Published by Chapman and Hall on behalf of the United Nations Environment Programme.

Tseng, C. T., N. J. Su, C. L. Sun, A. E. Punt, S. Z. Yeh, D. C. Liu, and W. C. Su (2013). Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES Journal of Marine Science: Journal du Conseil. doi: 10.1093/icesjms/fss205.

Vuuren, V., P, D., E. Jae, K. Mikiko, R. Keywan, T. Allison, H. Kathy, H. George, K. Tom, K. Volker, and L. Jean-Francois (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.

Waliser, D. E., and C. Gautier (1993). A satellite-derived climatology of the ITCZ. Journal of Climate, 6(11), 2162-2174.

Wood, S. (2006). R-manual: The mgcv package: version 1.3-22. Technical Report.

Yamagata, T., S. K. Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao (2004). Coupled ocean‐atmosphere variability in the tropical Indian Ocean. Earth's Climate, 189-211.

Young, J. W., M. J. Lansdell, R. A. Campbell, S. P. Cooper, F. Juanes, and M. A. Guest (2010). Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Marine Biology, 157(11), 2347-2368.

Zagaglia, C. R., J. A. Lorenzzetti, and J. L. Stech (2004). Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment, 93(1), 267-281.

Zainuddin, M., K. Saitoh, and S. I. Saitoh (2008). Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography, 17(2), 61-73.

周芹沛 (2015). 大西洋大目鮪鮪延繩釣釣獲率與海洋環境變動關係之研究。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,65pp。

葉柏威 (2014). 以泛加成模式評估IPCC未來氣候情境下太平洋鮪釣漁況變動。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,112pp。

黃敏茜 (2012). 以泛加成模式分析南太平洋長鰭鮪釣獲率與海洋環境之關係。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,75pp。

藍國瑋 (2012). 印度洋黃鰭鮪鮪釣漁況與海洋環境變動關係之研究。國立臺灣海洋大學環境生物與漁業科學學系博士論文,127pp。

嚴國維 (2010). 以GIS建立中西太平洋黃鰭鮪棲地適合度經驗模式。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,84pp。
曾淑惠 (2009). 我國鮪延繩釣產業群聚與殘局策略之探討。國立中山大學企業管理學系研究所碩士論文,71pp。

蘇楠傑 (2003). 臺灣近海鮪延繩釣漁業黃鰭鮪的年齡、成長、死亡率與單位加入生產量。國立臺灣大學海洋研究所碩士論文,74pp。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊