(3.238.130.97) 您好!臺灣時間:2021/05/18 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊嘉欣
研究生(外文):Chia-Hsin Yang
論文名稱:異營菌協同作用對於微藻生質柴油的燃料特性影響
論文名稱(外文):Effects of synergistic action of heterotrophic microorganisms on fuel characteristics of microalgae biodiesel
指導教授:林成原林成原引用關係
指導教授(外文):Cherng-Yuan Lin
口試委員:邱求三林秀美朱義旭
口試委員(外文):Chiou, Chyow-SanLin, Siou-MeiJu, Yi-Hsu
口試日期:2016-01-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:41
中文關鍵詞:擬球藻光合細菌枯草芽孢桿菌生物量共同培養
外文關鍵詞:Nannochloropsis oculataRhodobacter sphaeroidesBacillus subtilisbiomassco-cultivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物生產的油脂又稱為單細胞油 (single cell oils, SCOs),相較於動植物油脂,單細胞油具有微生物生長週期短、不受季節氣候的影響、無資源枯竭與糧食競爭或素食者不便的疑慮,以及可利用培養基組成或生長條件之調控之優點,可誘導菌種產生特定組成的油脂並提高產量。因此運用微生物生產生質柴油或機能性油脂的技術日益受到重視。考慮目前微藻生質柴油在培養上遭遇的問題,本研究選用擬球藻Nannochloropsis oculata作為試驗藻種,與光合異營菌Rhodobacter sphaeroides和化學異營菌Bacillus subtilis兩種不同能量來源(energy source)的異營菌進行混合培養,檢測微生物在混合培養過程中菌種生長曲線、微藻生長曲線、兩微生物生長相互關係、營養源硝酸態氮(NO_3^-)與磷酸鹽(PO_4^(3-))的變化期望建立更穩定的產油微藻生態系統。實驗結果顯示在不同菌種的選擇上,光合異營菌Rhodobacter sphaeroides不論在生物量243.004 mg/L還是油脂含量24.1 mg/L上皆高於化學異營菌的生物量220.953 mg/L及油脂含量20.1 mg/L。但兩菌種對微藻的培養皆產生正向作用,尤其添加Rhodobacter sphaeroides 比起單獨培養擬球藻生物量提昇1.28倍,另外油脂含量也提昇1.36倍。擬球藻與Bacillus subtilis,Rhodobacter sphaeroides分別混合培養,硝酸鹽及磷酸鹽含量下降速度皆高於單獨培養擬球藻,由實驗結果可以得知混合培養下微藻的生長速率高於單獨培養,能有效提升培養效率。藻菌進行混合培養生產生質柴油的後續研究,宜選擇添加Rhodobacter sphaeroides進行,以收穫最大量的微藻粗油脂。
Oils produced by microorganisms also known as single cell oils (SCOs) compared to animal and vegetable oil have shorter growth cycle and higher oil productivity, unaffected by climate and no controversial issue of food competition, thereby have the potential for applications in producing biofuels. In consideration and of the current dilemma of producing microalgae biofuels, microalgae (Nannochloropsis oculata), heterotrophic photosynthetic bacteria (Rhodobacter sphaeroides) and chemical heterotrophic bacteria (Bacillus subtilis) were selected for co-cultivation. During the cultivation, the variations of the biomass, particle size, nitrate content, phosphate content, and lipid content were measured and analyzed to develope an effective and economical microalgae cultivation system.
The Experimental results show that co-cultivation of Nannochloropsis oculata with Bacillus subtilis for 72 hours can achieve microorganisms biomass 220.953mg/ L and lipid content 20.1mg/ L. After 72-hour of co-cultivation Nannochloropsis oculata with Rhodobacter sphaeroides, the microorganisms biomass and lipid content achieve 243.004mg/ L and 24.1mg/ L, respectively. Hence, co-cultivation of Nannochloropsis oculata with Rhodobacter sphaeroides were more productive than Bacillus subtilis. Furthermore, the microorganisms biomass of co-cultured Nannochloropsis oculata with Rhodobacter sphaeroides were 1.28 times of single culture, and lipid content were 1.36 times of those of being culture alone. In condequence, adding Rhodobacter sphaeroides to Nannochloropsis oculata can enhance the microorganisms biomass and lipid content of the microalgae.


摘要 ⅰ
圖目錄 ⅳ
表目錄 ⅴ
第一章、前言 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 3
第二章、文獻回顧 4
2.1 產油微藻 4
2.1.1 擬球藻特徵 4
2.1.2影響微藻生長的環境因子 5
2.1.3 微藻生長機制 8
2.2 異營菌特徵 9
2.2.1 光合細菌特徵 10
2.2.2 枯草芽孢桿菌特徵 13
2.2.3 水體微生物的氮循環 13
2.2.4 水體微生物的碳循環 14
2.3藻類與細菌相互關係研究 15
2.3.1 菌對藻的促進作用 15
2.3.2菌對藻的抑製作用 16
第三章、材料與方法 18
3.1 實驗流程圖 18
3.2 實驗材料 19
3.2.1 實驗藻種 19
3.2.2 實驗菌種 20
3.2.3 培養基組成 21
3.3實驗儀器 23
3.4實驗菌種培養方法 25
3.5 實驗藻種培養方法 25
3.6 實驗方法 26
第四章、結果與討論 29
4.1與不同異營菌混合培養對擬球藻生長影響 29
4.2混合培養對培養水質的影響 31
4.3 混合培養對油脂含量影響 34
第五章、結論 35
5.1 結論 35
5.2未來研究建議 35
參考文獻 36

[1]Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093.
[2]李華,王偉波,劉永定,徐愛華,李敦海,沈銀武。(2011)。微藻生物柴油發展與產油微藻資源利用。Renewable Energy Resources,29 (4)。
[3]Zhang, X., Rong, J., Chen, H., He, C., & Wang, Q. (2014). Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Frontiers in Energy Research, 2, 32.
[4]Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental science & technology, 43(17), 6475-6481.
[5]陳定遠。(2008)。光合菌於各種代謝環境下之系統生物學研究,國立臺灣大學分子與細胞生物學研究所,碩士論文。
[6]王三郎。(1999)。應用微生物學,二版。高立圖書,台北,2,421-432。
[7]Steinberg, P. D., & De Nys, R. (2002). Chemical mediation of colonization of seaweed surfaces. Journal of Phycology, 38(4), 621-629.
[8]Rizvi, S. J. H., Haque, H., Singh, V. K., & Rizvi, V. (1992). A discipline called allelopathy. Allelopathy, Springer Netherlands, 1-10.
[9]陳德輝,袁峻峰,章宗涉,榮立榮,陳堅。(1999)。微囊藻和柵藻共培養實驗及其競爭參數的計算。生態學報,19(6),908-913。
[10]Stein, R., Fahl, K., Futterer, D.K., Galimov, E.M., & Stepanets, O. V. (2003). Siberian River Run-Off in the Kara Sea, Volume 6: Characterisation, Quantification, Variability, and environmental significance. Proceeding in Marine Science, New York: Elsevier Science, 238-243.
[11]潘克厚,王金鳳,朱葆華。(2007)。海洋微藻間競爭研究進展。海洋科學,31(5):58-62。
[12]Zhang, X., Rong, J., Chen, H., He, C., & Wang, Q. (2014). Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Frontiers in Energy Research, 2, 32.
[13]國立臺灣海洋大學水生動物實驗中心。(2016)。常用餌料生物,from: http://aac.ntou.edu.tw/touchmaker/front/bin/ptdetail.phtml?Part=228&Category=0,2016.01.
[14]Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
[15]Richmond, A. (2008). Handbook of microalgal culture: biotechnology and applied phycology. John Wiley & Sons.
[16]Yeh, K. L., & Chang, J. S. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP‐31. Engineering in Life Sciences, 10(3), 201-208.
[17]Ogbonna, J. C., & Tanaka, H. (2000). Light requirement and photosynthetic cell cultivation–development of processes for efficient light utilization in photobioreactors. Journal of applied phycology, 12(3-5), 207-218.
[18]Sukenik, A., & Carmeli. Y. (1990). Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. Journal of Phycology, 26(3), 463-469.
[19]Hoshida, H., Ohira, T., Minematsu, A., Akada, R., & Nishizawa, Y. (2005). Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology, 17(1), 29-34.
[20]Hoshida, H., Ohira, T., Minematsu, A., Akada, R., & Nishizawa, Y. (2005). Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology, 17(1), 29-34.
[21]Gross, E. M. (2003). Allelopathy of aquatic autotrophs. Critical reviews in plant sciences, 22(3-4), 313-339.
[22]Chen, F. (1996). High cell density culture of microalgae in heterotrophic growth.Trends in biotechnology, 14(11), 421-426.
[23]Lalibertè, G., & Noüie, J. (1993). Auto-, hetero-, and mixotrophic growth of chlamydomonas humicola (chloroimiyckak) on acetate 1. Journal of Phycology, 29(5), 612-620.
[24]Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.
[25]Gruber, N. (2008). The marine nitrogen cycle: overview and challenges. Nitrogen in the marine environment, 1-50.
[26]Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1), 195-214.
[27]Zhang, Z., Sachs, J. P., & Marchetti, A. (2009). Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects. Organic Geochemistry, 40(3), 428-439.
[28]Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano letters, 9(2), 731-737.
[29]吳思賢。(2010)。深層海水培養微藻製備生質柴油,國立臺灣海洋大學,碩士論文。
[30]Schmidt, L. E., & Hansen, P. J. (2001). Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH.Marine Ecology Progress Series, 216, 67-81.
[31]Becker, E. W. (1994). Microalgae: biotechnology and microbiology (Vol. 10). Cambridge University Press.
[32]Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO 2 utilization of Nannochloropsis oculata in response to CO 2 aeration. Bioresource technology, 100(2), 833-838.
[33]Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource technology, 98(3), 560-564.
[34]Ben‐Amotz, A., Tornabene, T. G., & Thomas, W. H. (1985). Chemical profile of selected species of microalgae with emphasis on lipids. Journal of Phycology, 21(1), 72-81.
[35]Cifuentes, A. S., González, M. A., Inostroza, I., & Aguilera, A. (2001). Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): growth and pigment content across a salinity gradient.Journal of Phycology, 37(2), 334-344.
[36]Fogg, G. E., & Thake, B. (1987). Algal cultures and phytoplankton ecology. University of Wisconsin Press.
[37]Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1), 195-214.
[38]李永函。(2002)。水產餌料生物學,大連出版社。
[39]Zhang, X., Shu, M., Wang, Y., Fu, L., Li, W., Deng, B. & Shen, W. (2014). Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World Journal of Microbiology and Biotechnology, 30(9), 2523-2531.
[40]Shen, T., Liu, S. K., Fu, L. Q., Zheng, J. J., & Li, W. F. (2012). Applicatio n and mechanism of photosynthetic bacteria in fish culture. Fisheries Science, 31(2), 114-117.
[41]Miyake, J. (2014). Hydrogen production using photosynthetic bacteria. In Microbial Production Springer Japan 263-281.
[42]Rhodobacter capsulatus. (2016). Image from Bacterio-Web. Image posted to https://microbewiki.kenyon.edu/index.php/Rhodobacter 2016.01.
[43]蘇優拉,張逸,李嘉賓,陸軍農。(2012)。卟啉的生物合成途徑與化學合成方法的比較。大學化學,27(6),1-11。
[44]汪良駒,石偉,劉暉,劉衛琴,姜衛兵,侯喜林。(2004)。外源5-氨基乙酰丙酸處理對小白菜葉片的光合作用效應,南京農業大學學報,27 (2),34-38。
[45]Porra, R. J. (2005). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. In Discoveries in Photosynthesis Springer Netherlands 633-640.
[46]Czarnecki, O., & Grimm, B. (2012). Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of experimental botany, 63(4), 1675-1687.
[47]Kim, E. S., Lee, H. J., Bang, W. G., Choi, I. G., & Kim, K. H. (2009). Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnology and bioengineering, 102(5), 1342-1353.
[48]As the name implies, Bacillus subtilis is bacillus or rod shaped. (2016). Bacillus Subtilis: Characteristics & Arrangement. Image posted to http://study.com/academy/lesson/bacillus-subtilis-characteristics-arrangement.html 2016.01.
[49]Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiology Reviews, 37(3): 462-476.
[50]Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., & Helbert, W. (2006). Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology, 71(1): 23-33.
[51]Wilson, J. T., Greene, S., & Alexander, M. (1979). Effect of interactions among algae on nitrogen fixation by blue-green algae (cyanobacteria) in flooded soils. Applied and environmental microbiology, 38(5), 916-921.
[52]Amin, S. A., Green, D. H., Gärdes, A., Romano, A., Trimble, L., & Carrano, C. J. (2012). Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Biometals, 25(1), 181-192.
[53]Liu, H., Zhou, Y., Xiao, W., Ji, L., Cao, X., & Song, C. (2012). Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay. Microbiological research, 167(5), 292-298.
[54]Carrillo, P., Villar-Argaiz, M., & Medina-Sánchez, J. M. (2008). Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse?Microbial ecology, 56(2), 350-363.
[55]Watanabe, F., Katsura, H., Takenaka, S., Fujita, T., Abe, K., Tamura, Y. & Nakano, Y. (1999). Pseudovitamin B12 is the predominant cobamide of an algal health food, spirulina tablets. Journal of agricultural and food chemistry, 47(11), 4736-4741.
[56]Tison, D. L., & Lingg, A. J. (1979). Dissolved organic matter utilization and oxygen uptake in algal-bacterial microcosms. Canadian journal of microbiology, 25(11), 1315-1320.
[57]Egan, S., Thomas, T., Holmström, C., & Kjelleberg, S. (2000). Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environmental Microbiology, 2(3), 343-347.
[58]Singh, S., Dhar, D. W., & Gupta, R. K. (2011). Morphological and molecular characterization of Calothrix isolates obtained from diverse environments in India. Microbiology, 80(3), 411-419.
[59]Mieszkin, S., Martin-Tanchereau, P., Callow, M. E., & Callow, J. A. (2012). Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae. Biofouling, 28(9), 953-968.
[60]Medina, M., & Neis, U. (2007). Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci Technol, 55(11), 165-171.
[61]Sansone, U., Belli, M., Riccardi, M., Alonzi, A., Jeran, Z., Radojko, J., & Cavolo, F. (1998). Adhesion of water-borne particulates on freshwater biota.Science of the total environment, 219(1), 21-28.
[62]Zheng, T. L. (2011). The microbiology of red tide control. The Nanqiang Series of Published Books (Xiamen University) (the 5 th editor). Xiamen: Xiamen University Press.
[63]Haaber, J., & Middelboe, M. (2009). Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling. The ISME journal, 3(4), 430-441.
[64]Lovejoy, C., Bowman, J. P., & Hallegraeff, G. M. (1998). Algicidal Effects of a Novel MarinePseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the GeneraChattonella, Gymnodinium, andHeterosigma. Applied and Environmental Microbiology, 64(8), 2806-2813.
[65]Kim, Y. S., Lee, D. S., Jeong, S. Y., Lee, W. J., & Lee, M. S. (2009). Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. The Journal of Microbiology, 47(1), 9-18.
[66]Kato, J., Amie, J., Murata, Y., Kuroda, A., Mitsutani, A., & Ohtake, H. (1998). Development of a genetic transformation system for an alga-lysing bacterium.Applied and environmental microbiology, 64(6), 2061-2064.
[67]Chen, W. M., Sheu, F. S., & Sheu, S. Y. (2011). Novel l-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme and microbial technology,49(4), 372-379.
[68]Bhattarai, H. D., Ganti, V. S., Paudel, B., Lee, Y. K., Lee, H. K., Hong, Y. K., & Shin, H. W. (2007). Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World Journal of Microbiology and Biotechnology, 23(2), 243-249.
[69]Daft, M. J., McCORD, S. B., & Stewart, W. D. P. (1975). Ecological studies on algal‐lysing bacteria in fresh waters. Freshwater Biology, 5(6), 577-596.
[70]Mitsutani, A., Yamasaki, I., Kitaguchi, H., Kato, J., Ueno, S., & Ishida, Y. (2001). Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia, 40(3), 286-291.
[71]Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S., & Nichols, P. D. (2002). Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Marine Ecology Progress Series, 244(1), 15.
[72]Remel. (2010). Tryptic Soy Agar.
[73]HiMedia Laboratories. (2011). Nutrient Broth, Technical Data.
[74]Culture Collection of Algae and Protozoa. (2002). Walne’s medium for algal cultures.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top