(44.192.70.216) 您好!臺灣時間:2021/05/09 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊嘉安
研究生(外文):Chia-an Yang
論文名稱:以熱阻網路法分析大型動力系統熱性能
論文名稱(外文):Thermal performance analysis of large power system by thermal network method
指導教授:王榮昌王榮昌引用關係
指導教授(外文):Jung-Chang Wang
口試委員:李亞偉胡海平張天立
口試委員(外文):Lee, Ya-WeiHu, Hai-PingChang, Tien-Li
口試日期:2016-01-23
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:熱阻網路法CFD動力系統柴油引擎
外文關鍵詞:resistance network methodCFDpower systemdiesel engine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熱阻網路法分析大型動力系統熱性能,研究分為兩階段,第一階段討論一450 HP 車輛動力系統。由車輛熱性能實驗建立一CFD 模擬模型,其中實驗狀態分為怠速運轉與動態操作,怠速運轉等效模型(以下稱Case1-0)誤差低於3.2%,動態操作等效模型(以下稱CaseM1-0)誤差低於11.8%。Case1-0 動力系統總熱阻值為1.982×10-2 ℃/W,平均熱對流係數36.974 W/m2 ∙ K。CaseM1-0 動力系統總熱阻值為2.888×10-3 ℃/W,平均熱對流係數88.190 W/m2 ∙ K。研究針對此柴油車輛3D-CAD 模型進行設變,建構15 種不同的動力系統冷卻模型進行模擬分析,怠速運轉時稱Case1-1~Case3-4,動態操作稱CaseM1-1~CaseM3-4。怠速運轉下Case2-2 總熱阻值較Case1-0 下降1.564%,對流係數提升40.366%,冷卻效果最佳。動態操作下CaseM3-2 總熱阻值較CaseM1-0 下降18.182%,對流係數提升31.897%,冷卻效果最佳。第二階段討論一16154 HP 船舶動力系統熱分佈,並透過研究建立之熱阻網路圖討論船舶模型中引擎、軸承、渦輪增壓器以及發電機之熱傳遞量,建立CFD模擬模型。模擬結果顯示,機艙動力系統總熱阻值為5.229×10-5 ℃/W,平均熱對流系數為6.234 W/m2 ∙ K。參考本研究提出之熱阻網路圖,可降低柴油引擎動力系統建立數值模擬模型之時間,亦可利用動力系統總熱阻值作為動力系統熱性
能優劣之評估。
Study through thermal network analysis discuss large power system thermal performance. Study is divided into two phases. The first phase, discussion of a 450 HP
vehicle power systems. Establishment of a CFD simulation model by the vehicle thermal performance experiments into idling state and dynamic operation. Idling equivalent model (Case1-0) error is less than 3.2%, the equivalent dynamic operating model (CaseM1-0) error is less than 11.8%. Case1-0 power system total thermal resistance is 1.982×10-2 ℃/W, and the average coefficient of thermal convection is 36.974 W/m2 ∙ K. CaseM1-0 power system total thermal resistance is 2.888×10-3 ℃ /W, and the average coefficient of thermal convection is 88.190 W/m2 ∙ K. Studies set up 15 different powertrain simulation model. Idling called Case1-1~Case3-4, and dynamic called CaseM1-1~CaseM3-4. Case 2-2 compare with Case 1-0, the total thermal resistance decreased 1.564%, and the average coefficient of thermal convection enhanced 40.366%. The cooling effect is best. CaseM3-2 compare with CaseM1-0, the total thermal resistance decreased 18.182%, and the average coefficient of thermal onvection enhanced 31.897%. The cooling effect is best. The second phase, discuss a 16154 HP marine power systems heat distribution.Through thermal network diagram, discuss the amount of heat transfer in analysis model, including engine, bearings, turbochargers and generator. The simulation results show, engine room power system total thermal resistance is 5.229×10-5 ℃/W, and the average coefficient of thermal convection is 6.234 W/m2 ∙ K. Study presents a thermal resistance network diagram, can reduce the diesel engine power system simulation model established time. It can be used as a power system total thermal resistance of the power system to assess the thermal performance better or worse.
摘要................................................. i
目錄............................................... iii
圖目錄............................................... v
表目錄...............................................ix
符號表............................................... x
第一章 前言........................................... 1
1.1 研究背景與動機..................................... 1
1.2 文獻回顧.......................................... 3
1.3 研究構............................................ 9
第二章 研究基本理論................................... 10
2.1 柴油引擎熱機理論.................................. 10
2.2 基本熱流理論...................................... 15
2.3 風扇理論......................................... 18
2.4 熱阻分析......................................... 19
第三章 八輪甲車動力系統熱性能.......................... 21
3.1 熱性能實驗....................................... 21
3.1.1 實驗流程概論................................... 21
3.1.2 實驗結果....................................... 25
3.2 數值模擬......................................... 33
3.2.1 邊界條件與參數設定.............................. 35
3.2.2 更變設計........................................38
3.2.3 模擬結果........................................41
第四章 熱阻分析方法................................... 61
4.1 動力系統熱阻網路圖................................ 61
4.2 八輪甲車動力系統熱阻分析........................... 71
4.2.1 怠速運轉....................................... 71
4.2.2 動態操作....................................... 75
第五章 船舶動力系統數值模擬............................ 78
5.1 船舶動力系統熱傳遞量評估........................... 78
5.2 數值模擬結果...................................... 79
第六章 結論........................................... 83
6.1 結論............................................. 83
6.2 建議..............................................83
參考文獻.............................................. 85

[1] 曾山,世紀回眸看現代國外輪式裝甲車的發展特點,國防科技,第7 期,pp.13-16,2006。
[2] 八輪甲車技術規格。
[3] Murakami S., Kato S., “Numerical and experimental study on room airflow 3D predictions using the k-ε turbulence model,” Building Environment, vol.24, no.1,
pp.85-97, 1989.
[4] Han,T.,“Three-dimensional navier-stokes simulation for passenger compartment cooling,” Int. J. of vehicle design, vol. 10, no. 2,pp.175-186, 1989.
[5] G. H. Lee, J.Y. Yoo, “Performance Analysis and Simulation of Automobile Air Conditioning System,” Internal Journal of Refrigeration, vol. 23, pp. 243-254,
2000.
[6] Currle J., Maué J., “Numerical Study of the Influence of Air Vent Area and Air Mass Flux on the Thermal Comfort of Car Occupants,” SAE paper 2000-01-0980, 2000.
[7] A. Fujita, J. I. Kanemaru, H. Nakagawa and Y. Ozeki, “Numerical Simulation Method to Predict the Thermal Environment inside a Car Cabin,” JSAE Review, vol. 22, pp. 39-47, 2001.
[8] 賴文光、鄭光廷,CAE 應用於車輛室內之空調冷房效率研究,ARTC 財團法人車輛測試研究中心知識庫CAE 技術論文,2010。
[9] 范順維,使用CFD 分析以太陽能驅動風扇之汽車降溫系統,大華科技大學機電工程所論文,2013。
[10] Wu, H. W., Chiu, C. P., “ Computer diagnosis system for thermal analysis of engine piston,” Wärme-und Stoffubertragung, vol.24, pp. 203-210, 1989.
[11] M. H. Shojaefard, A. R. Noorpoor, D. A. Bozchaloe, and M. Ghaffarpour, “Transient thermal analysis of engine exhaust vavel,” Numerical Heat Transfer, part A, 48: pp.627- 644, 2005.
[12] 林宗達,引擎冷卻流場與熱傳特性之研究,國立台北科技大學車輛工程所論文,2005。
[13] Zhang Ping, OuYang Guangyao, “Computational Fluid Dynamics Technology applied in Flow Analysis in Diesel Engine’s Cooling Water Jacket, ” IEEE, pp.11-13, 2010.
[14] Hai-bo Chen, Zhao-cheng Yuan, “The Influence of Flow Guide Structure on Distribution of Flow Field in Separate Cooling Water Jacket of Engine, ” IEEE,pp.666-668, 2010.
[15] 專利編號:CN 201496138 U,裝甲車發動機冷卻系統,中華人民共和國國家知識產權局,2010。
[16] 蘇艷、舒暢、楊萬均、肖敏,裝甲車輛內部溫濕度數據採集和動態變化規律初探,裝備環境工程,第七卷第一期,pp.6-9,2010。
[17] 任承欽、蔡德宏、劉敬平、樊明明,汽車發動機艙散熱性能實驗及數值研究,湖南大學學報,第39 卷第4 期,pp.37-41,2012。
[18] Hu Kaiyao, Yang Xiaolong, and Yang Jia, “Underhood Thermal Analysis and improvement of a bus with Rear Enging Compartment, ” IEEE , 2011.
[19] Fluent Inc. “Formula 1 External Aerodynamics,” Application Briefs from Fluent,EX166, Lebanon, NH, 2002.
[20] Francis T. Makowski, “Computer simulation helpsengineers improve Ferrari formula one aerodynamics,” The High Technology Cars and Engines Symposium, Mostra-Convegno, Italy, 2001.
[21] Kleber, A., “Simulation of air flow around an OPELASTRA vehicle with FLUENT, ” Journal Articles by Fluent Software Users, JA132, pp.1-6, 2001.
[22] 吳佩學、謝琛、張順富、羅翊文,小型競賽車風阻之實驗與數值探討及設計改進,科學與工程技術期刊,第六卷第四期,pp.9-18,2010。
[23] 楊劍東、宋祚忠、張驄泰,“電腦輔助機艙通風管路設計”,中國造船暨輪機工程學刊,vol.23,no.1,pp.23-29,2004。
[24] 吳盈翰、紀凯鴻、邵揮洲,“以知識工程方法應用於船舶機艙通風系統佈置設計”,中國造船暨輪機工程學刊,vol.31,no.2,pp.75-88,2012。
[25] Fluent Inc. “Formula 1 External Aerodynamics,” Application Briefs from Fluent, EX166, Lebanon, NH, 2002.
[26] Francis T. Makowski, “Computer simulation elpsengineers improve Ferrari formula one aerodynamics,” The High Technology Cars and Engines Symposium, Mostra-Convegno, Italy, 2001.
[27] He Wei-jian, Wang Ying-xin, Duan Shu-lin, Yu Hong-liang, and Li Yong,“Numerical simulation of temperature and velocity fields in vessel engine room,” Journal of Dalian Maritime University, vol.31, no.1, pp39-41,2005.
[28] 邱肅肅、鄭衛剛、王瑞,“某輪渡機艙通風系統數值模擬”,技術縱橫,vol.6,pp.67-70,2014。
[29] E. E. M Olsson, L. M Ahrné, and A.C Trägårdh, “Heat transfer from a slot air jet impinging on a circular cylinder,” Journal of Food Engineering, vol. 63, iss. 4, pp. 393–401, 2004.
[30] Saeidi, S. M., and J. M. Khodadadi, “Forced Convection in a Square Cavity with Inlet and Outlet Ports,” International Journal of Heat and Mass Transfer, vol. 49,no. 11‐12, pp. 1896‐1906, 2006.
[31] Haibo Yang, Xinchun Cao, and Xuewen Sun, “Effects of Spray Angle on Spray Cooling of Extruded Aluminum Alloy Plate,” AASRI Conference on Modeling, Identification and Control, pp. 630-635, 2012.
[32] Hung-Yi Li, and Kuan-Ying Chen, “Thermal performance of plate-fin heat sinks under confined impinging jet conditions,” International Journal of Heat and Mass
Transfer 50, pp1963-1970, 2007.
[33] 陳韋睿,實驗分析嵌入式熱管熱沉之熱性能及預測其U 型與L 型熱管性能曲線,國立台灣海洋大學碩士論文,2012。
[34] 劉冠慶,高功率LED 燈具之散熱基板熱流照明分析暨陣列式鰭片的最佳化設計,國立台灣海洋大學碩士論文,2014。
[35] 游富雄,3-D 非金屬LED 球泡燈結構體設計與熱性能分析,國立台灣海洋大學碩士論文,2014。
[36] J. Fourier, “Theorie analytique de la chaleur,” Paris: Gauthier-Villars, 1888.
[37] J.-C. Wang, S.-L. Chen, “Heat Transfer - Engineering Applications(ISBN 978-953-307-361-3),” Chapter 14 Air cooling module applications to consumerelectronic
products, InTech Open Access Publisher, pp.339-366, 2011.
[38] J.C. Wang, R.T. Wang, “A Novel Formula for Effective Thermal Conductivity of Vapor Chamber,” EXPERIMENTAL TECHNIQUES, vol.35, issue 5, pp.35-40,2011.
[39] Yunus A. Cengel, Afshin J. Ghajar, “Heat and Mass Transfer: Fundamentals & Applications,” Fourth Edition, McGraw-Hill, 2011.
[40] AMCA, “The Fan Laws”, AMCA Standard 99-0021-01.
[41] Youboer, http://www.youboer.com/index.asp.
[42] Robert F. Kunz, Nameer Salman,“Flow Field and Thermal Management Analysis of an Armored Vehicle Engine Compartment,” Flow Field and Thermal Management Analysis, pp385-409, 2004.
[43] Ekrem Buyukkaya, Muhammet Cerit, “Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method,” Surface& Coatings Technology 202, pp398-402, 2007.
[44] Hyungmook Kang, Hyunchul Ahn, and Kyoungdoug Min, “Smart cooling system of the double loop coolant structure with engine thermal management modeling,”
Applied Thermal Engineering 79, pp.124-131, 2015.
[45] Willard W. Pulkrabek, “Enginnering Fundamentals of the Internal Combustion Engine,” Pearson Prentice Hall, 2004.
[46] Y. Miyairi, Soc. Automot. Eng. 880187, 1989.
[47] Ferguson, C. R., Internal Combustion Engine. New York:Wiley, 1986.
[48] J.B.Heywood, “Internal Combustion Engine fundamentals,” International cd. McGraw-Hill, New York, 1998.
[49] Yunus A. Cengel, “HEAT AND MASS TRANSFER: A PRACTICAL APPROACH, ” NewYork : McGraw-Hill, pp.75, 2006.
[50] 台灣中油股份有限公司,http://www.cpc.com.tw。
[51] C. J. Leising, G. P. Purohit, S. P. Degrey, and J. G. Finegold, “Waste Heat Recovery In Truck Engines,” SAE Technical Paper 780686, 1978.
[52] Bruce R.Munson, Donald F. Young and Theodore H. Okiisshi, ”Fundamentals of Fluid Mechanics 2/e,” New York:John Wiley& Sons, pp52-56,1990.
[53] Ekrem Buyukkaya, Muhammet Cerit, “Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method,” Surface& Coatings Technology 202, pp398-402, 2007.
[54] B&W, http://www.mandieselturbo.com/ download/ project_guides_tier2/ printed/S60ME-C8_2.pdf, 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔