跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥均
研究生(外文):Chen, Yen-Chun
論文名稱:二氧化鈦與氧化鋅奈米流體熱電性能探討暨奈米熱電管之研製
論文名稱(外文):Investigations on Thermoelectric Performances of Titanium Dioxide and Zinc Oxide for Development of Thermoeletric Pipe
指導教授:王榮昌王榮昌引用關係
指導教授(外文):Wang, Jung-Chang
口試委員:蘇程裕閻順昌張天立邱智瑋
口試委員(外文):Su , Cherng-YuhYen, Shun-ChangChang, Tien-LiChiu, Chih-Wei
口試日期:2016-06-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:奈米流體電化學氧化還原反應因次分析
外文關鍵詞:NanofluidElectrochemistryRedox ReactionDimensional Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為二個部分,第一部份為利用二階合成法搭配超音波分散技術製備奈米流體,以調配1%~5%重量百分濃度二氧化鈦和氧化鋅奈米流體,檢測粒徑、酸鹼值、表面電位、熱傳導係數、黏度及吸光值六項性質,透過其性質數據探討奈米流體懸浮性、穩定性與熱傳導性能。在電化學部分,以銅與鋁做為電極,奈米流體做為電池槽之電解液,進行氧化還原反應實驗,測試1%~5%重量百分濃度下之二氧化鈦與氧化鋅的輸出電量,再透過因次分析推導奈米流體熱傳導係數與發電量的經驗公式;第二部分為結合熱管的熱傳導特性和電化學的原理製作奈米熱電管,其工作原理為高功率的機器元件產生熱能時,可將熱能傳導至奈米熱電管內,使熱能提高氧化還原反應速率,進而產生額外的電能,再將電能回饋應用於電子產品上。在不同壓力、填充量、電解液與溫度下透過實驗測試奈米熱電管的熱電性能,並利用因次分析方法推導奈米熱電管熱傳導係數與電量密度的經驗公式。
實驗結果顯示,在製備1~5%重量百分濃度的奈米流體熱電性能實驗中,調配二氧化鈦奈米流體以2%重量百分濃度較佳,調配氧化鋅奈米流體以1%重量百分濃度較佳,並透過文獻數據調配較佳濃度之氧化鋁奈米流體。本研究對氧化鋅、二氧化鈦、氧化鋁奈米流體進行熱電性能分析,整體以二氧化鈦奈米流體之性能較佳,在四週內能有良好的懸浮穩定性,熱傳導係數與電量密度隨著溫度升高有增加之趨勢,可透過經驗公式推算溫度在20℃~40℃之間且1~5%重量百分濃度二氧化鈦奈米流體之熱傳導係數與電量密度。在二氧化鈦奈米流體添加離子化合物實驗中,以添加0.2%重量百分濃度的氫氧化鈉較佳,可使奈米熱電管整體輸出電量大幅提升,且對二氧化鈦奈米流體之懸浮穩定性影響較小。在奈米熱電管熱電性能實驗中,量測奈米熱電管不同溫度與壓力下之輸出電量,並透過熱阻分析計算不同溫度與壓力下奈米熱電管之熱傳導係數,其結果顯示,隨著溫度升高和壓力降低輸出電量與熱傳導係數有增加之趨勢,在管內壓力400torr之下以管內溶液填充率80%之性能較佳,並可利用奈米熱電管添加二氧化鈦奈米流體之經驗公式,代入溫度與壓力參數,便能預估熱傳導係數與電量密度。

The research content has two parts. The first part of the second-order synthesis method for preparing nanofluid with ultrasonic dispersion technology. Preparation of 1 to 5% by weight percentage concentration of zinc oxide and titanium oxide nanofluids, Detecting nanofluid particle size, pH, surface potential, thermal conductivity, viscosity and absorbance. Detection of 1% to 5% by weight percent concentration of titanium dioxide and zinc oxide nano fluid output power. Calculate the nanofluid thermal conductivity and power generation empirical formula by Dimensional Analysis.
The second part of the heat pipe heat transfer and electrochemical generation characteristics by making the thermoelectric pipe. The working principle of the machine-generated heat is conducted to the thermoelectric tube, so that the heat increase the oxidation-reduction reaction rate, thereby generating additional power in the load and feedback. Thermal energy to improve the oxidation-reduction reaction rate, and thus generate additional electricity to power the load and recovering. The method of dimensional analysis to derive the thermoelectric pipe thermal conductivity and power density empirical formula.
The results show, Preparation of 1 to 5% by weight percentage concentration of nanofluids, Preparation of titanium oxide nanofluids are the preferred concentration of 2 percent by weight percent, Preparation of zinc oxide nanofluids are the preferred concentration of 1 percent by weight precent, and the preferred concentration of the prepared nano alumina fluid through the literature data. In this study, zinc oxide, titanium dioxide, aluminum oxide nanofluid thermoelectric performance test to the performance of the preferred titanium dioxide nanofluid. Titanium dioxide nanofluids have good suspension stability and thermoelectric properties. Titanium dioxide nano fluid thermal conductivity and power density empirical formula is applied at a temperature between 20 ℃ ~ 40 ℃ and 1 to 5% by weight percent concentration. Titanium dioxide nano fluids experiment ionic compound added to the fluid to add 0.2% by weight percent sodium hydroxide preferred. Through the addition of ionic compounds can significantly enhance the power generated by the thermoelectric pipe, and the suspension stability of titanium dioxide nanofluid of little effect. Improve the temperature and lowering the pressure will increase power and thermal conductivity by the thermoelectric pipe. Under pressure tube performance 400torr to 80% of the inner tube filling rate preferred solution. The use of thermoelectric properties of thermoelectric pipe empirical formula, substituting the temperature and pressure parameters, will be able to estimate the thermal conductivity and power density.

摘要 I
目錄 III
圖目錄 V
表目錄 VII
符號表 VIII
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 2
1-3論文架構 4
第二章 基礎理論分析與探討 5
2-1文獻回顧 5
2-2奈米科技之發展 7
2-3奈米顆粒懸浮機制 8
2-3.1 分散技術 8
2-3.2 電雙層 9
2-3.3 界面活性劑 10
2-4奈米流體性質分析 11
2-4.1 密度 11
2-4.2 比熱 11
2-4.3 黏滯係數 11
2-4.4 熱傳導係數 12
2-4.5 壓力 12
2-5 熱阻分析 13
2-6 電化學 14
2-6.1 氧化還原反應 14
2-6.2 電離 14
2-6.3 電池 15
2-7 因次分析 16
第三章 研究方法 18
3-1 奈米流體之研製 19
3-1.1 實驗材料與設備 19
3-1.2 奈米流體製備流程 26
3-1.3 奈米流體熱電性能檢測 27
3-1.4 奈米流體熱電性能經驗公式推導 30
3-2 奈米電管之研製 31
3-2.1 奈米熱電管結構設計 31
3-2.2 實驗材料與設備 33
3-2.3 奈米熱電管之熱電性能檢測 36
3-2.4 奈米熱電管熱電性能經驗公式推導 39
第四章 結果與討論 41
4-1奈米流體之性質檢測結果 41
4-1.1介面活性劑對奈米流體的影響 42
4-1.2超音波震盪時間對奈米流體的影響 43
4-1.3表面電位與酸鹼值 45
4-1.4奈米流體之顆粒粒徑 48
4-1.5熱傳導係數 50
4-1.6黏度 52
4-1.7吸光值 53
4-1.8電流與電量密度 56
4-1.9奈米流體熱傳導係數與電量密度經驗公式 60
4-2不同粉末之奈米流體熱電性能比較 64
4-3奈米熱電管熱電性能檢測結果 68
4-3.1添加離子化合物對奈米流體的影響 68
4-3.2填充量對奈米熱電管熱電性能的影響 70
4-3.3壓力對奈米熱電管熱電性能的影響 72
4-3.4不同電解液對奈米熱電管熱電性能的影響 75
4-3.5奈米熱電管熱傳導係數與電量密度經驗公式 78
第五章 總結與未來建議 82
5-1 總結 82
5-2 未來建議 83
5-3 本文達成目標 84
參考文獻 85

[1] S.U.M. Chandrasekar, A Review on the mechanism of Heat Transport in Naofluids, Heat Transport Engineering, vol. 30(14), pp. 1136-1150, 2009.
[2] 柯麗霞,陳正達,王崇人, 奈米科技的早期發展歷史, 化學教育,vol. 62(4),pp.569~578,2004。
[3] J. C. Maxwell, A Treatise on Electricity and Magnetism, Second Edition, Oxford university press, New York, pp. 435, 1904.
[4] S.U.S. Choi Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231: 99-106, 1995.
[5] J.A. Eastman , U.S. Choi , S. Li , L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluid. In: S. Komarneni , J.C. Parker, H.J. Wollenberger, Nanophase and Nanocomposite Materials II.MRS, Pittsburg, PA, pp.3~11,1997.
[6] J.A. Eastman, S.U.S Choi, S. Li, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6): 718-720, 2001.
[7] H. Xie, J. Wang, T. Xi, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7): 4568-4572, 2002.
[8] B.P. Singh, R. Menchavez, C. Takai, et al. Stability of dispersions of colloidal alumina particles in aqueous suspensions[J]. Journal of Colloid and Interface Science, 291(1): 181-186, 2005.
[9] 呂育翰,相變化材料顆粒與奈米流體混合液之相關熱物性質量測與分析,碩士論文,國立成功大學, 2006。
[10] 賴耒聲,二氧化鈦奈米流體熱性質與應用研究,碩士論文,國立台北科技大學,2007。
[11] X.F. Li, D.S. Zhua, X.J. Wang, N. Wanga, J.W. Gaoa, and H. Lia, "Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids," Thermochimica Acta, vol. 469, pp. 98–103, 2008.
[12] S. Ganguly, S. Sikdar, S. Basu. Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technology, 2009, 196(3): 326-330.
[13] 陳登傑,Al2O3奈米流體應用於LED均溫板之熱傳分析,碩士論文,國立台灣海洋大學,2010。
[14] S.B. White, A.J.M. Shih, K.P. Pipe ,Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale research letters, 6(1): 1, 2011.
[15] 王智民,鋁空氣電池特性研究,碩士論文,國立聯合大學,2012。
[16] 陳雋永,紫外光輔助銀/二氧化鈦複合奈米流體製備與鑑定,碩士論文,國立中興大學, 2013。
[17] 姜玟州,奈米等級工作流體之研製暨熱電性能探討,碩士論文,國立台灣海洋大學輪機工程學系,2013。
[18] K.G.K. Sarojini, S. V. Manoj, P. K. Singh, T. Pradeep, and S. K. Dasa, "Electrical conductivity of ceramic and metallic nanofluids," Colloids and Surfaces A: Physicochem, vol. 417, pp. 39-46, 2013.
[19] J.-C. Wang, Thermoelectric Transformation and Illuminative Performance Analysis of a Novel LED-MGVC Device, International Communications in Heat and Mass Transfer,Vol. 48, November, pp.80-85, 2013.
[20] S. Abbasi, S.M. Zebarjad, S.H.N. Baghban, et al. Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. Bulletin of Materials Science, 37(6): 1439-1445, 2014.
[21] M. Hadadian, E.K. Goharshadi, A. Youssefi ,Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids[J]. Journal of Nanoparticle Research, 16(12): 1-17, 2014.
[22] 葉力瑋,熱電型Al2O3奈米流體性能探討與經驗公式之推導,碩士論文,國立臺灣海洋大學,2015。
[23] S.A. Adio, M. Sharifpur, J.P. Meyer ,Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bulletin of Materials Science, 38(5): 1345-1357, 2015.
[24] R.-T. Wang and J.-C. Wang, Alumina Nanofluids as Electrolytes Comparisons to Various Neutral Aqueous Solutions inside Battery, Journal of Mechanics,Vol. 32, No. 3, June, pp.369-379, 2016.
[25] R.P. Feynman ,There's plenty of room at the bottom. Microelectromechanical Systems, Journal of, 1(1): 60-66, 1992.
[26] R.P. Feynman ,There’s plenty of room at the bottom. Miniaturization(HD Gilbert, ed.) Reinhold, New York, 1961.
[27] M.F. Hochella ,There’s plenty of room at the bottom: Nanoscience in geochemistry. Geochimica et Cosmochimica Acta, 66(5): 735-743, 2002.
[28] R.W. Whatmore ,Nanotechnology—what is it? Should we be worried?. Occupational Medicine, 56(5): 295-299, 2006.
[29] 洪若瑜,磁性奈米粒和磁性流體製備與應用,pp. 1-3章。
[30] R. Mondragon, J.E. Julia, A. Barba, et al. Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder technology, 224: 138-146, 2012.
[31] 林詩傑,改良式真空潛弧製程製備奈米二氧化鈦懸浮液之性質研究,碩士論文,國立台北科技大學,2006。
[32] 張有義,郭蘭生,膠體及界面化學入門,高立圖書,pp.191-205,2004。
[33] 蕭章能, 朝春光,以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究,博士論文,國立交通大學,2007。
[34] K.S. Suganthi, K.S. Rajan. Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. International Journal of Heat and Mass Transfer, 55(25): 7969-7980, 2012.
[35] Y. Xuan and Q. Li, Investigation on convective heat transfer and flow featuresof nanofluids, ASME Journal of Heat Transfer, 125, pp.151-155, 2003.
[36] B. C. Pak and Y. Cho, “Hydrodynamic and heat transfer study of dispersed fluidswith submicron metallic oxide particles,” Experimental Heat Transfer, 11(2), pp. 151-170,1998.
[37] H.C. Brinkman, “The viscosity of concentrated suspensions andsolutions, ” J.Chem. Phys. 20, 1952, pp.571-581.
[38] J.-C. Wang, C.-Y. Lin, T.-C. Chen, Thermal performance of a vapor chamber-based plate of high-power LEDs filled with Al2O3 nanofluid, JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, Vol. 13, No. 4, April, pp.2871-2878, 2013.
[39] J.C. Maxwell, “A Treatise on Electricity and Magnetism,” second ed., ClarendonPress, Oxford, UK, 1881.
[40] S.M. You, J.H. Kim, K.H. Kim. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters, 83(16): 3374-3376, 2003.
[41] G.S. Kell. Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. Journal of Chemical and Engineering Data, 20(1): 97-105, 1975.
[42] Wark, Kenneth. Generalized Thermodynamic Relationships. Thermodynamics 5th. New York, NY: McGraw-Hill, Inc. 1988 [1966].
[43] 劉冠慶,高工率LED燈具之散熱基板熱流照明分析暨陣列式鳍片的最佳化設計,碩士論文,國立臺灣海洋大學,2014。
[44] Sobota, Tomasz. "Fourier’s Law of Heat Conduction." Encyclopedia of Thermal Stresses. Springer Netherlands, 1769-1778, 2014.
[45] 熊楚強,王月,電化學,新文京, 2008,pp.2-7。
[46] 陳昭雄,分析化學,文京圖書,2001,pp.19-23。
[47] J.-C. Wang and W.-C. Chiang,Researches on Thermo-Electric Properties of Seawater and Al2O3 Nanofluids, Applied Mechanics and Materials,Vol. 394, pp. 14-19, 2013.
[48] J.-C. Wang, Novel green illumination energy for LED with ocean battery materials, International Journal of Materials & Product Technology,Vol. 44, Nos. 3/4, pp.187-200, 2012.
[49] D.J. Evans, D.J. Searles, E. F. Mittag ,luctuation theorem for Hamiltonian systems: Le Chatelier’s principle. Physical Review E, 63(5): 051105, 2001.
[50] S. Shukla, P . Zhang, H.J. Cho, et al. Room temperature hydrogen response kinetics of nano–micro-integrated doped tin oxide sensor. Sensors and Actuators B: Chemical, 120(2): 573-583, 2007.
[51] D.F. Young, B.R. Munson, T.H. Okiishi, et al. A brief introduction to fluid mechanics. John Wiley & Sons, 2010.
[52] J.H. Evans. Dimensional analysis and the Buckingham Pi theorem. American Journal of Physics, 40(12): 1815-1822, 1972.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊