[1] S.U.M. Chandrasekar, A Review on the mechanism of Heat Transport in Naofluids, Heat Transport Engineering, vol. 30(14), pp. 1136-1150, 2009.
[2] 柯麗霞,陳正達,王崇人, 奈米科技的早期發展歷史, 化學教育,vol. 62(4),pp.569~578,2004。
[3] J. C. Maxwell, A Treatise on Electricity and Magnetism, Second Edition, Oxford university press, New York, pp. 435, 1904.
[4] S.U.S. Choi Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231: 99-106, 1995.
[5] J.A. Eastman , U.S. Choi , S. Li , L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluid. In: S. Komarneni , J.C. Parker, H.J. Wollenberger, Nanophase and Nanocomposite Materials II.MRS, Pittsburg, PA, pp.3~11,1997.
[6] J.A. Eastman, S.U.S Choi, S. Li, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6): 718-720, 2001.
[7] H. Xie, J. Wang, T. Xi, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7): 4568-4572, 2002.
[8] B.P. Singh, R. Menchavez, C. Takai, et al. Stability of dispersions of colloidal alumina particles in aqueous suspensions[J]. Journal of Colloid and Interface Science, 291(1): 181-186, 2005.
[9] 呂育翰,相變化材料顆粒與奈米流體混合液之相關熱物性質量測與分析,碩士論文,國立成功大學, 2006。[10] 賴耒聲,二氧化鈦奈米流體熱性質與應用研究,碩士論文,國立台北科技大學,2007。[11] X.F. Li, D.S. Zhua, X.J. Wang, N. Wanga, J.W. Gaoa, and H. Lia, "Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids," Thermochimica Acta, vol. 469, pp. 98–103, 2008.
[12] S. Ganguly, S. Sikdar, S. Basu. Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technology, 2009, 196(3): 326-330.
[13] 陳登傑,Al2O3奈米流體應用於LED均溫板之熱傳分析,碩士論文,國立台灣海洋大學,2010。[14] S.B. White, A.J.M. Shih, K.P. Pipe ,Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale research letters, 6(1): 1, 2011.
[15] 王智民,鋁空氣電池特性研究,碩士論文,國立聯合大學,2012。[16] 陳雋永,紫外光輔助銀/二氧化鈦複合奈米流體製備與鑑定,碩士論文,國立中興大學, 2013。[17] 姜玟州,奈米等級工作流體之研製暨熱電性能探討,碩士論文,國立台灣海洋大學輪機工程學系,2013。[18] K.G.K. Sarojini, S. V. Manoj, P. K. Singh, T. Pradeep, and S. K. Dasa, "Electrical conductivity of ceramic and metallic nanofluids," Colloids and Surfaces A: Physicochem, vol. 417, pp. 39-46, 2013.
[19] J.-C. Wang, Thermoelectric Transformation and Illuminative Performance Analysis of a Novel LED-MGVC Device, International Communications in Heat and Mass Transfer,Vol. 48, November, pp.80-85, 2013.
[20] S. Abbasi, S.M. Zebarjad, S.H.N. Baghban, et al. Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. Bulletin of Materials Science, 37(6): 1439-1445, 2014.
[21] M. Hadadian, E.K. Goharshadi, A. Youssefi ,Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids[J]. Journal of Nanoparticle Research, 16(12): 1-17, 2014.
[22] 葉力瑋,熱電型Al2O3奈米流體性能探討與經驗公式之推導,碩士論文,國立臺灣海洋大學,2015。[23] S.A. Adio, M. Sharifpur, J.P. Meyer ,Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bulletin of Materials Science, 38(5): 1345-1357, 2015.
[24] R.-T. Wang and J.-C. Wang, Alumina Nanofluids as Electrolytes Comparisons to Various Neutral Aqueous Solutions inside Battery, Journal of Mechanics,Vol. 32, No. 3, June, pp.369-379, 2016.
[25] R.P. Feynman ,There's plenty of room at the bottom. Microelectromechanical Systems, Journal of, 1(1): 60-66, 1992.
[26] R.P. Feynman ,There’s plenty of room at the bottom. Miniaturization(HD Gilbert, ed.) Reinhold, New York, 1961.
[27] M.F. Hochella ,There’s plenty of room at the bottom: Nanoscience in geochemistry. Geochimica et Cosmochimica Acta, 66(5): 735-743, 2002.
[28] R.W. Whatmore ,Nanotechnology—what is it? Should we be worried?. Occupational Medicine, 56(5): 295-299, 2006.
[29] 洪若瑜,磁性奈米粒和磁性流體製備與應用,pp. 1-3章。
[30] R. Mondragon, J.E. Julia, A. Barba, et al. Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder technology, 224: 138-146, 2012.
[31] 林詩傑,改良式真空潛弧製程製備奈米二氧化鈦懸浮液之性質研究,碩士論文,國立台北科技大學,2006。[32] 張有義,郭蘭生,膠體及界面化學入門,高立圖書,pp.191-205,2004。
[33] 蕭章能, 朝春光,以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究,博士論文,國立交通大學,2007。[34] K.S. Suganthi, K.S. Rajan. Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. International Journal of Heat and Mass Transfer, 55(25): 7969-7980, 2012.
[35] Y. Xuan and Q. Li, Investigation on convective heat transfer and flow featuresof nanofluids, ASME Journal of Heat Transfer, 125, pp.151-155, 2003.
[36] B. C. Pak and Y. Cho, “Hydrodynamic and heat transfer study of dispersed fluidswith submicron metallic oxide particles,” Experimental Heat Transfer, 11(2), pp. 151-170,1998.
[37] H.C. Brinkman, “The viscosity of concentrated suspensions andsolutions, ” J.Chem. Phys. 20, 1952, pp.571-581.
[38] J.-C. Wang, C.-Y. Lin, T.-C. Chen, Thermal performance of a vapor chamber-based plate of high-power LEDs filled with Al2O3 nanofluid, JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, Vol. 13, No. 4, April, pp.2871-2878, 2013.
[39] J.C. Maxwell, “A Treatise on Electricity and Magnetism,” second ed., ClarendonPress, Oxford, UK, 1881.
[40] S.M. You, J.H. Kim, K.H. Kim. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters, 83(16): 3374-3376, 2003.
[41] G.S. Kell. Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. Journal of Chemical and Engineering Data, 20(1): 97-105, 1975.
[42] Wark, Kenneth. Generalized Thermodynamic Relationships. Thermodynamics 5th. New York, NY: McGraw-Hill, Inc. 1988 [1966].
[43] 劉冠慶,高工率LED燈具之散熱基板熱流照明分析暨陣列式鳍片的最佳化設計,碩士論文,國立臺灣海洋大學,2014。[44] Sobota, Tomasz. "Fourier’s Law of Heat Conduction." Encyclopedia of Thermal Stresses. Springer Netherlands, 1769-1778, 2014.
[45] 熊楚強,王月,電化學,新文京, 2008,pp.2-7。
[46] 陳昭雄,分析化學,文京圖書,2001,pp.19-23。
[47] J.-C. Wang and W.-C. Chiang,Researches on Thermo-Electric Properties of Seawater and Al2O3 Nanofluids, Applied Mechanics and Materials,Vol. 394, pp. 14-19, 2013.
[48] J.-C. Wang, Novel green illumination energy for LED with ocean battery materials, International Journal of Materials & Product Technology,Vol. 44, Nos. 3/4, pp.187-200, 2012.
[49] D.J. Evans, D.J. Searles, E. F. Mittag ,luctuation theorem for Hamiltonian systems: Le Chatelier’s principle. Physical Review E, 63(5): 051105, 2001.
[50] S. Shukla, P . Zhang, H.J. Cho, et al. Room temperature hydrogen response kinetics of nano–micro-integrated doped tin oxide sensor. Sensors and Actuators B: Chemical, 120(2): 573-583, 2007.
[51] D.F. Young, B.R. Munson, T.H. Okiishi, et al. A brief introduction to fluid mechanics. John Wiley & Sons, 2010.
[52] J.H. Evans. Dimensional analysis and the Buckingham Pi theorem. American Journal of Physics, 40(12): 1815-1822, 1972.